摘要:
A method for fabricating a compound semiconductor epitaxial structure includes the following steps. Firstly, a first compound epitaxial layer is formed on a substrate. Then, a continuous epitaxial deposition process is performed to form a second compound epitaxial layer on the first compound epitaxial layer, so that the second compound epitaxial layer has a linearly-decreased concentration gradient of metal. Afterwards, a semiconductor material layer is formed on the second compound epitaxial layer.
摘要:
A CMP process is provided. A first polishing process on a wafer is performed using a first hard polishing pad with a first slurry. Then, a buffering process on the wafer is performed using a soft polishing pad with a cleaning agent to buffer the pH value in the first polishing process and to remove at least portion of the first slurry and the cleaning agent by the contact with the first soft polishing pad simultaneously. Thereafter, a second polishing process on the wafer is performed using a second hard polishing pad with a second slurry such that the pH value after the buffering process is between the pH value in the first polishing process and the pH value in the second polishing process. The method can avoid the scratch issue of wafer surface by particles resulting from pH shock and cross contamination.
摘要:
A method for fabricating a compound semiconductor epitaxial structure includes the following steps. Firstly, a first compound epitaxial layer is formed on a substrate. Then, a continuous epitaxial deposition process is performed to form a second compound epitaxial layer on the first compound epitaxial layer, so that the second compound epitaxial layer has a linearly-decreased concentration gradient of metal. Afterwards, a semiconductor material layer is formed on the second compound epitaxial layer.
摘要:
A method for cleaning a surface is disclosed. First, a substrate including Cu and a barrier layer is provided. Second, a first chemical mechanical polishing procedure is performed on the substrate. Then, a second chemical mechanical polishing procedure is performed on the barrier layer. The second chemical mechanical polishing procedure includes performing a main chemical mechanical polishing procedure to partially remove the barrier layer and performing a chemical buffing procedure on the substrate using a chemical solution which has a pH value of about 6 to about 8 to remove residues on the substrate after the main chemical mechanical polishing procedure. Later, a water rinsing procedure is performed on the substrate. Afterwards, a post clean procedure is performed on the substrate after the second chemical mechanical polishing procedure.
摘要:
A chemical mechanical polishing (CMP) process at least includes a polishing step and an ex-situ conditioning step, and the ex-situ conditioning step must be immediately performed after the polishing step. Therefore, it can save the process time. Furthermore, when applying to a CMP apparatus with several polishing regions, it can integrate these polishing regions having different polishing time in order to shorten total manufacturing time, thereby improving throughput.
摘要:
The wafer bevel etching apparatus of the present invention includes a wafer-protecting mask to cover parts of a wafer. A central region and a wafer bevel region surrounding the central region are defined on the wafer. The wafer-protecting mask includes a center sheltering region and at least one wafer bevel sheltering region. The center sheltering region can completely shelter the central region of the wafer, and the wafer bevel sheltering region extends from the outside edge of the center sheltering region, shelters parts of the wafer bevel region, and exposes the other parts of the wafer bevel region.
摘要:
The wafer bevel etching apparatus of the present invention includes a wafer-protecting mask to cover parts of a wafer. A central region and a wafer bevel region surrounding the central region are defined on the wafer. The wafer-protecting mask includes a center sheltering region and at least one wafer bevel sheltering region. The center sheltering region can completely shelter the central region of the wafer, and the wafer bevel sheltering region extends from the outside edge of the center sheltering region, shelters parts of the wafer bevel region, and exposes the other parts of the wafer bevel region.
摘要:
A CMP process is provided. A first polishing process on a wafer is performed using a first hard polishing pad with a first slurry. Then, a buffering process on the wafer is performed using a soft polishing pad with a cleaning agent to buffer the pH value in the first polishing process and to remove at least portion of the first slurry and the cleaning agent by the contact with the first soft polishing pad simultaneously. Thereafter, a second polishing process on the wafer is performed using a second hard polishing pad with a second slurry such that the pH value after the buffering process is between the pH value in the first polishing process and the pH value in the second polishing process. The method can avoid the scratch issue of wafer surface by particles resulting from pH shock and cross contamination.
摘要:
A method of removing an insulating layer on a substrate is described, including a first CMP process and a second CMP process performed in sequence, wherein the polishing slurry used in the first CMP process and that used in the second CMP process have substantially the same pH value that exceeds 7.0. A cleaning step is conducted between the first and the second CMP processes to remove a specific substance which would otherwise cause undesired particles to form in the second CMP process.
摘要:
A solution for fixed abrasive chemical mechanical polishing process including a protection constituent, a hydrolysis constituent and water is described. The protection constituent is used to protect a silicon nitride and its concentration is between 0.001 wt % and 10 wt %. The hydrolysis constituent is used to hydrolyze a silicon oxide and its concentration is between 0.001 wt % and 10 wt %. The concentration ofthe water is between 80 wt % and 99.998 wt %.