摘要:
A method for fabricating a metal oxide semiconductor (MOS) device is described, including following steps. Two recesses are formed in a substrate. A first epitaxy growth process is performed, so as to form a first semiconductor compound layer in each of the recesses. A second epitaxy growth process is performed with an epitaxial temperature lower than 700° C., so as to form a cap layer on each of the first semiconductor compound layers. Each of the cap layers includes a second semiconductor compound layer protruding from a surface of the substrate. The first and the second semiconductor compound layers are composed of a first Group IV element and a second Group IV element, wherein the second Group IV element is a nonsilicon element. The content of the second Group IV element in the second semiconductor compound layers is less than that in the first semiconductor compound layers.
摘要:
A method for fabricating a metal oxide semiconductor (MOS) device is described, including following steps. Two recesses are formed in a substrate. A first epitaxy growth process is performed, so as to form a first semiconductor compound layer in each of the recesses. A second epitaxy growth process is performed with an epitaxial temperature lower than 700° C., so as to form a cap layer on each of the first semiconductor compound layers. Each of the cap layers includes a second semiconductor compound layer protruding from a surface of the substrate. The first and the second semiconductor compound layers are composed of a first Group IV element and a second Group IV element, wherein the second Group IV element is a nonsilicon element. The content of the second Group IV element in the second semiconductor compound layers is less than that in the first semiconductor compound layers.
摘要:
A method for fabricating a compound semiconductor epitaxial structure includes the following steps. Firstly, a first compound epitaxial layer is formed on a substrate. Then, a continuous epitaxial deposition process is performed to form a second compound epitaxial layer on the first compound epitaxial layer, so that the second compound epitaxial layer has a linearly-decreased concentration gradient of metal. Afterwards, a semiconductor material layer is formed on the second compound epitaxial layer.
摘要:
A semiconductor device having epitaxial structures includes a gate structure positioned on a substrate, epitaxial structures formed in the substrate at two sides of the gate structure, and an undoped cap layer formed on the epitaxial structures. The epitaxial structures include a dopant, a first semiconductor material having a first lattice constant, and a second semiconductor material having a second lattice constant, and the second lattice constant is larger than the first lattice constant. The undoped cap layer also includes the first semiconductor material and the second semiconductor material. The second semiconductor material in the epitaxial structures includes a first concentration, the second semiconductor material in the undoped cap layer includes at least a first concentration, and the second concentration is lower than the first concentration.
摘要:
A method for fabricating a compound semiconductor epitaxial structure includes the following steps. Firstly, a first compound epitaxial layer is formed on a substrate. Then, a continuous epitaxial deposition process is performed to form a second compound epitaxial layer on the first compound epitaxial layer, so that the second compound epitaxial layer has a linearly-decreased concentration gradient of metal. Afterwards, a semiconductor material layer is formed on the second compound epitaxial layer.
摘要:
First, a substrate with a recess is provided in a semiconductor process. Second, an embedded SiGe layer is formed in the substrate. The embedded SiGe layer includes an epitaxial SiGe material which fills up the recess. Then, a pre-amorphization implant (PAI) procedure is carried out on the embedded SiGe layer to form an amorphous region. Next, a source/drain implanting procedure is carried out on the embedded SiGe layer to form a source doping region and a drain doping region. Later, a source/drain annealing procedure is carried out to form a source and a drain in the substrate. At least one of the pre-amorphization implant procedure and the source/drain implanting procedure is carried out in a cryogenic procedure below −30° C.
摘要:
A method of fabricating an epitaxial layer includes providing a substrate. The substrate is etched to form at least a recess within the substrate. A surface treatment is performed on the recess to form a Si—OH containing surface. An in-situ epitaxial process is performed to form an epitaxial layer within the recess, wherein the epitaxial process is performed in a hydrogen-free atmosphere and at a temperature lower than 800° C.
摘要:
A test pattern for measuring semiconductor alloys using X-ray diffraction (XRD) includes a first region to an Nth region defined on a wafer, and a plurality of test structures positioned in the first region and so forth up to in the Nth region. The test structures in the same region have sizes identical to each other and the test structures in different regions have sizes different from each other.
摘要:
A method of fabricating an epitaxial layer includes providing a substrate. The substrate is etched to form at least a recess within the substrate. A surface treatment is performed on the recess to form a Si—OH containing surface. An in-situ epitaxial process is performed to form an epitaxial layer within the recess, wherein the epitaxial process is performed in a hydrogen-free atmosphere and at a temperature lower than 800° C.
摘要:
First, a substrate with a recess is provided in a semiconductor process. Second, an embedded SiGe layer is formed in the substrate. The embedded SiGe layer includes an epitaxial SiGe material which fills up the recess. Then, a pre-amorphization implant (PAI) procedure is carried out on the embedded SiGe layer to form an amorphous region. Next, a source/drain implanting procedure is carried out on the embedded SiGe layer to form a source doping region and a drain doping region. Later, a source/drain annealing procedure is carried out to form a source and a drain in the substrate. At least one of the pre-amorphization implant procedure and the source/drain implanting procedure is carried out in a cryogenic procedure below −30° C.