摘要:
In general, in a first aspect, the invention features a system that includes a microlithography projection optical system. The microlithography projection optical system includes a plurality of elements arranged so that during operation the plurality of elements image radiation at a wavelength λ from an object plane to an image plane. At least one of the elements is a reflective element that has a rotationally-asymmetric surface positioned in a path of the radiation. The rotationally-asymmetric surface deviates from a rotationally-symmetric reference surface by a distance of about λ or more at one or more locations of the rotationally-asymmetric surface.
摘要:
A method for correcting at least one image defect of a projection objective of a lithography projection exposure machine, the projection objective comprising an optical arrangement composed of a plurality of lenses and at least one mirror, the at least one mirror having an optically operative surface that can be defective and is thus responsible for the at least one image defect, comprises the steps of: at least approximately determining a ratio VM of principal ray height hMH to marginal ray height hMR at the optically operative surface of the at least one mirror, at least approximately determining at least one optically operative lens surface among the lens surfaces of the lenses, at which the magnitude of a ratio VL of principal ray height hLH to marginal ray height hLR comes at least closest to the ratio VM, and selecting the at least one determined lens surface for the correction of the image defect.
摘要翻译:一种用于校正光刻投影曝光机的投影物镜的至少一个图像缺陷的方法,所述投影物镜包括由多个透镜和至少一个反射镜构成的光学装置,所述至少一个反射镜具有光学操作表面, 可能是有缺陷的,并且因此对至少一个图像缺陷负责,包括以下步骤:至少近似地确定主光线高度h M H的比率VM与边缘光线高度h M 在至少一个反射镜的光学操作表面处至少近似地确定透镜的透镜表面中的至少一个光学透镜表面,其中主光线高度h的比值VL的大小, 对于边缘射线高度h L L至少最接近比率VM,并且选择至少一个确定的透镜表面用于校正图像缺陷。
摘要:
A method of processing an optical substrate having a convex surface comprises an interferometric measurement using a beam of diverging measuring light traversing the substrate and reflected from a concave mirror.
摘要:
A refractive optical imaging system for imaging an object field arranged in an object surface of the imaging system into an image field arranged in an image surface of the imaging system on a demagnifying imaging scale has a multiplicity of optical elements which are configured and arranged such that a defined finite field curvature of the imaging system is set such that an object surface concavely curved relative to the imaging system is imaged into a flat image surface.
摘要:
A catadioptric objective for a microlithography projection system has an in-line single-axis arrangement of lenses and reflectors. The catadioptric portion of the objective includes a catadioptric lens element with at least one reflective surface or surface portion reflecting light back into the lens, so that the catadioptric lens element interacts with light rays through reflection as well as refraction.
摘要:
Objective (1, 601), in particular a projection objective for a microlithography projection apparatus, with first birefringent lenses (L108, L109, L129, L130) and with second birefringent lenses (L101–L107, L110–L128). The first lenses (L108, L109, L129, L130) are distinguished from the second lenses (L101–L107, L110–L128) by the lens material used or by the material orientation. After passing through the first lenses (L108, L109, L129, L130) and the second lenses (L101–L107, L110–L128), an outer aperture ray (5, 7) and a principal ray (9) are subject to optical path differences for two mutually orthogonal states of polarization. The difference between these optical path differences is smaller than 25% of the working wavelength. In at least one first lens (L129, L130), the aperture angle of the outer aperture ray (5, 7) is at least 70% of the largest aperture angle occurring for said aperture ray in all of the first lenses (L108, L109, L129, L130) and second lenses (L101–L107, L110–L128). This arrangement has the result that the first lenses (L108, L109, L129, L130) have a combined material volume of no more than 20% of the combined total material volume of the first lenses (L108, L109, L129, L130) and second lenses (L101–L107, L110–L128).
摘要:
A purely refractive projection objective suitable for immersion micro-lithography is designed as a single-waist system with five lens groups, in the case of which a first lens group with a negative refracting power, a second lens group with a positive refracting power, a third lens group with a negative refracting power, a fourth lens group with a positive refracting power and a fifth lens group with a positive refracting power are provided. The system aperture is in the region of maximum beam diameter between the fourth and the fifth lens group. Embodiments of projection objectives according to the invention achieve a very high numerical aperture of NA>1 in conjunction with a large image field, and are distinguished by a good optical correction state and moderate overall size. Pattern widths substantially below 100 nm can be resolved when immersion fluids are used between the projection objective and substrate in the case of operating wavelengths below 200 nm.
摘要:
There is provided a reflective X-ray microscope for examining an object in an object plane. The reflective X-ray microscope includes (a) a first subsystem, having a first mirror and a second mirror, disposed in a beam path from the object plane to the image plane, and (b) a second subsystem, having a third mirror, situated downstream of the first subsystem in the beam path. The object is illuminated with radiation having a wavelength
摘要:
An objective for a microlithography projection system has at least one fluoride crystal lens. The effects of birefringence, which are detrimental to the image quality, are reduced if the lens axis of the crystal lens is oriented substantially perpendicular to the {100}-planes or {100}-equivalent crystallographic planes of the fluoride crystal. If two or more fluoride crystal lenses are used, they should have lens axes oriented in the (100)-, (111)-, or (110)-direction of the crystallographic structure, and they should be oriented at rotated positions relative to each other. The birefringence-related effects are further reduced by using groups of mutually rotated (100)-lenses in combination with groups of mutually rotated (111)- or (110)-lenses. A further improvement is also achieved by applying a compensation coating to at least one optical element of the objective.
摘要:
A catadioptric projection objective is used to project a pattern arranged in an object plane of the projection objective into an image plane of the projection objective with the formation of at least one real intermediate image and has an image-side numerical aperture NA>0.7. The projection objective comprises an optical axis and at least one catadioptric objective part that comprises a concave mirror and a first folding mirror. There are a first beam section running from the object plane to the concave mirror and a second beam section running from the concave mirror to the image plane. The first folding mirror is arranged with reference to the concave mirror in such a way that one of the beam sections is folded at the first folding mirror and the other beam section passes the first folding mirror without vignetting, the first beam section and the second beam section crossing one another in a cross-over region.