摘要:
A projection exposure system and a method for operating a projection exposure system for microlithography with an illumination system are disclosed. The illumination system includes at least one variably adjustable pupil-defining element. The illumination stress of at least one optical element of the projection exposure system is determined automatically in the case of an adjustment of the at least one variably adjustable pupil-defining element. From the automatically determined illumination stress, the maximum radiant power of the light source is set or determined and/or in which an illumination system is provided with which different illumination settings can be made. Usage of the projection exposure system is recorded and, from the history of the usage, at least one state parameter of at least one optical element of the projection exposure system is determined.
摘要:
The invention relates to a method for improving the imaging properties of a micro lithography projection objective, wherein the projection objective has a plurality of lenses between an object plane and an image plane, a first lens of the plurality of lenses being assigned a first manipulator (ml, Mn) for actively deforming the lens, the first lens being deformed for at least partially correcting an aberration, at least one second lens of the plurality of lenses furthermore being assigned at least one second manipulator, and the second lens being deformed in addition to the first lens. Furthermore, a method is described for selecting at least one lens of a plurality of lenses of a projection objective as actively deformable element, and a projection objective.
摘要:
The disclosure relates to a method for compensating image errors, generated by intensity distributions in optical systems, such as in projection lens arrays of microlithography systems, and to respective optical systems, such as projection lens arrays of microlithography systems.
摘要:
The disclosure relates to a microlithographic projection exposure apparatus, such as are used for the production of large-scale integrated electrical circuits and other microstructured components. The disclosure relates in particular to coatings of optical elements in order to increase or reduce the reflectivity.
摘要:
Catadioptric projection objective (1) for microlithography for imaging an object field (3) in an object plane (5) onto an image field (7) in an image plane (9), including a first partial objective (11) imaging the object field onto a first real intermediate image (13), a second partial objective (15) imaging the first intermediate image onto a second real intermediate image (17) and a third partial objective (19) imaging the second intermediate image onto the image field (7). The second partial objective (15) has exactly one concave mirror (21) and at least one lens (23). The minimum distance between an optically utilized region of the concave mirror (21) and an optically utilized region of a surface (25)—facing the concave mirror—of a lens (23) adjacent to the concave mirror is greater than 10 mm.
摘要:
A microlithographic projection exposure apparatus comprises a projection objective which images an object onto an image plane and has a lens with a curved surface. In the projection objective there is a liquid or solid medium which directly adjoins the curved surface over a region which is usable for imaging the object. The projection exposure apparatus also has an adjustable manipulator for reducing an image field curvature which is caused by heating of the medium during the projection operation.
摘要:
The invention relates to a method -for improving the imaging properties of a micro lithography projection objective (50), wherein the projection objective has a plurality of lenses (L1, L2, L3, L4, L5, L6, L7, L8) between an object plane and an image plane, a first lens of the plurality of lenses being assigned a first manipulator (ml, Mn) for actively deforming the lens, the first lens being deformed for at least partially correcting an aberration, at least one second lens of the plurality of lenses furthermore being assigned at least one second manipulator, and the second lens being deformed in addition to the first lens. Furthermore, a method is described for selecting at least one lens of a plurality of lenses of a projection objective as actively deformable element, and a projection objective.
摘要:
In a method for improving imaging properties of an illumination system or a projection objective of a microlithographic projection exposure apparatus, which comprises an optical element having a surface, the shape of the surface is measured directly at various points. To this end, a measuring beam is directed on the points, and the reflected or refracted beam is measured, e.g. using an interferometer. Based on deviations of the measured shape from a target shape, corrective measures are derived so that the imaging errors of the optical system are improved. The corrective measures may comprise a change in the position or the shape of the optical element being analyzed, or another optical element of the optical system. The target shape of the surface may, for example, be determined so that the optical element at least partially corrects imaging errors caused by other optical elements.
摘要:
A microlithographic projection exposure apparatus includes a projection lens that is configured for immersion operation. For this purpose an immersion liquid is introduced into an immersion space that is located between a last lens of the projection lens on the image side and a photosensitive layer to be exposed. To reduce fluctuations of refractive index resulting from temperature gradients occurring within the immersion liquid, the projection exposure apparatus includes heat transfer elements that heat or cool partial volumes of the immersion liquid so as to achieve an at least substantially homogenous or at least substantially rotationally symmetric temperature distribution within the immersion liquid.
摘要:
A projection objective of a microlithographic projection exposure apparatus has a high index refractive optical element (L3) with an index of refraction greater than 1.6. This element (L3) has a volume and a material related optical property which varies over the volume. Variations of this optical property cause an aberration of the objective. In one embodiment at least 4 optical surfaces are provided that are arranged in at least one volume (L3′) which is optically conjugate with the volume of the refractive optical element. Each optical surface comprises at least one correction means, for example a surface deformation or a birefringent layer with locally varying properties, which at least partially corrects the aberration caused by the variation of the optical property.