摘要:
A projection objective of a microlithographic projection exposure apparatus has a high index refractive optical element with an index of refraction greater than 1.6. This element has a volume and a material related optical property which varies over the volume. Variations of this optical property cause an aberration of the objective. In one embodiment at least 4 optical surfaces are provided that are arranged in at least one volume which is optically conjugate with the volume of the refractive optical element. Each optical surface comprises at least one correction means, for example a surface deformation or a birefringent layer with locally varying properties, which at least partially corrects the aberration caused by the variation of the optical property.
摘要:
A projection objective of a microlithographic projection exposure apparatus has a high index refractive optical element with an index of refraction greater than 1.6. This element has a volume and a material related optical property which varies over the volume. Variations of this optical property cause an aberration of the objective. In one embodiment at least 4 optical surfaces are provided that are arranged in at least one volume which is optically conjugate with the volume of the refractive optical element. Each optical surface comprises at least one correction means, for example a surface deformation or a birefringent layer with locally varying properties, which at least partially corrects the aberration caused by the variation of the optical property.
摘要:
A projection objective of a microlithographic projection exposure apparatus has a high index refractive optical element with an index of refraction greater than 1.6. This element has a volume and a material related optical property which varies over the volume. Variations of this optical property cause an aberration of the objective. In one embodiment at least 4 optical surfaces are provided that are arranged in at least one volume which is optically conjugate with the volume of the refractive optical element. Each optical surface comprises at least one correction means, for example a surface deformation or a birefringent layer with locally varying properties, which at least partially corrects the aberration caused by the variation of the optical property.
摘要:
The disclosure relates to an illumination system of a microlithographic projection exposure apparatus. The illumination system can include a depolarizer which in conjunction with a light mixing system disposed downstream in the light propagation direction at least partially causes effective depolarization of polarized light impinging on the depolarizer. The illumination system can also include a microlens array which is arranged upstream of the light mixing system in the light propagation direction. The microlens array can include a plurality of microlenses arranged with a periodicity. The depolarizer can be configured so that a contribution afforded by interaction of the depolarizer with the periodicity of the microlens array to a residual polarization distribution occurring in a pupil plane arranged downstream of the microlens array in the light propagation direction has a maximum degree of polarization of not more than 5%.
摘要:
The invention relates to a projection exposure system, in particular for micro-lithography. The projection exposure system according to the invention comprises a light source for producing light in the EUV region. The projection exposure system further comprises a first optical system for illuminating a mask by the light of the light source and a second optical system for imaging the mask on a component. At least one polarization-optical element is disposed on the beam path between the light source and the component.
摘要:
The disclosure relates to an illumination system of a microlithographic projection exposure apparatus. The illumination system can include a depolariser which in conjunction with a light mixing system disposed downstream in the light propagation direction at least partially causes effective depolarisation of polarised light impinging on the depolariser. The illumination system can also include a microlens array which is arranged upstream of the light mixing system in the light propagation direction. The microlens array can include a plurality of microlenses arranged with a periodicity. The depolariser can be configured so that a contribution afforded by interaction of the depolariser with the periodicity of the microlens array to a residual polarisation distribution occurring in a pupil plane arranged downstream of the microlens array in the light propagation direction has a maximum degree of polarisation of not more than 5%.
摘要:
The invention relates to a projection exposure system, in particular for micro-lithography. The projection exposure system according to the invention comprises a light source for producing light in the EUV region. The projection exposure system further comprises a first optical system for illuminating a mask by the light of the light source and a second optical system for imaging the mask on a component. At least one polarization-optical element is disposed on the beam path between the light source and the component.
摘要:
A method for determining intensity distribution in the focal plane of a projection exposure arrangement, in which a large aperture imaging system is emulated and a light from a sample is represented on a local resolution detector by an emulation imaging system. A device for carrying out the method and emulated devices are also described. The invention makes it possible to improve a reproduction quality since the system apodisation is taken into consideration. The inventive method includes determining the integrated amplitude distribution in an output pupil, combining the integrated amplitude distribution with a predetermined apodization correction and calculating a corrected apodization image according to the modified amplitude distribution.
摘要:
The invention concerns a method for operating a projection exposure apparatus to project the image of a structure of an object (5) arranged in an object plane (6) onto a substrate (10) arranged in an image plane (8). The object (5) is illuminated with light of an operating wavelength of the projection exposure apparatus according to one of several adjustable exposure modes. The light produces changes in at least one optical element (9) of the projection exposure apparatus, by which the optical properties of the projection exposure apparatus are influenced. The operation of the projection exposure apparatus makes allowance for the influencing of the optical properties of the projection exposure apparatus or a quantity dependent on the former, being calculated approximately on the basis of the exposure mode used and the structure of the object (5).
摘要:
The disclosure relates to an illumination system of a microlithographic projection exposure apparatus. The illumination system can include a depolariser which in conjunction with a light mixing system disposed downstream in the light propagation direction at least partially causes effective depolarisation of polarised light impinging on the depolariser. The illumination system can also include a microlens array which is arranged upstream of the light mixing system in the light propagation direction. The microlens array can include a plurality of microlenses arranged with a periodicity. The depolariser can be configured so that a contribution afforded by interaction of the depolariser with the periodicity of the microlens array to a residual polarisation distribution occurring in a pupil plane arranged downstream of the microlens array in the light propagation direction has a maximum degree of polarisation of not more than 5%.