Abstract:
The present disclosure provides a display panel separation pillar and a method for manufacturing the same, a display panel and a display device. The display panel separation pillar includes a first material pattern and a second material pattern on the first material pattern. The first material pattern includes an upper surface and a lower surface opposite to each other, and a first separation lateral side and a second separation lateral side which are opposite to each other and between the upper surface and the lower surface. The second material pattern includes an upper surface and a lower surface opposite to each other. The upper surface of the first material pattern directly contacts with the lower surface of the second material pattern. Projections of the first separation lateral side and the second separation lateral side of the first material pattern onto a plane of the lower surface of the second material pattern are between edges of the lower surface of the second material pattern.
Abstract:
An array substrate and a method for fabricating the same, and a display device are disclosed. The array substrate comprises light-transmissive regions for display and shading regions, a plurality of thin film transistors are provided in the shading region, the thin film transistor comprises: a base substrate; an active layer, a gate insulating layer, a gate and a passivation layer sequentially provided on the base substrate; and a source and a drain provided on the passivation layer, the source and the drain comprise a conductive shading layer connected to the active layer and a copper layer provided on the conductive shading layer, the conductive shading layer is provided between the active layer and the copper layer, and at least a part of region of the shading region other than the source and the drain is provided with the conductive shading layer.
Abstract:
An array substrate, a manufacturing method thereof and a display device are disclosed. The array substrate comprises a plurality of pixel unit regions each including a thin-film transistor (TFTs) and a pixel electrode. A first insulating layer provided with a first through hole and a second through hole is formed between an active layer of the TFT and the pixel electrode. A source electrode of the TFT is connected with the active layer through the first through hole. A drain electrode of the TFT is lapped onto the pixel electrode and connected with the active layer through the second through hole. The array substrate can prevent the oxidization of metal such as copper in the process of patterning a transparent conductive film.
Abstract:
A photoresist, a patterning method of a quantum dot layer, a QLED, a quantum dot color filter and a display device are disclosed, which can solve the problem that current patterning methods destroy quantum dots. The patterning method of a quantum dot layer includes the steps of: forming a hydrophilic photoresist pattern which comprises forming a photoresist material layer on a substrate by using a photoresist, patterning the photoresist material layer to form a photoresist pattern, and subjecting the photoresist to hydrophilic treatment; applying quantum dots; removing the quantum dots retained on the photoresist pattern; and stripping the photoresist pattern. The patterning method of a quantum dot layer in the present disclosure can improve the hydrophilic performance of the photoresist and reduce the adhesion of the lipophilic quantum dots on the photoresist.
Abstract:
A thin film transistor and a preparation method therefor, an array substrate and a display apparatus. The thin film transistor comprises an active layer (4), an etched barrier layer (5) disposed on the active layer (4), and a source and drain (6) disposed on the etched barrier layer (5). The source and drain (6) are disposed on a same layer in a spaced manner. First via holes (7) are formed in the etched barrier layer (5), second via holes (8) are formed in positions in the active layer (4) corresponding to the first via holes (7). The source and drain (6) are connected to the active layer (4) through the first via holes (7) formed in the etched barrier layer (5) and the second via holes (8) formed in the active layer (4). Because two second via holes are formed in the active layer, a design value L1 of the channel region length of the active layer is shortened and a metal oxide semiconductor array substrate with a narrow channel is formed and the charge rate is high, which helps to improve the display effect.
Abstract:
A preparation method of an oxide thin-film transistor is disclosed, and this method includes: forming a gate electrode, a gate insulating layer, an active layer, a source electrode and a drain electrode; forming of the active layer, the source electrode and the drain electrode includes: sequentially forming an oxide semiconductor thin film and a source-drain electrode metal thin film on a base substrate, an entire surface of the oxide semiconductor thin film being in direct contact with the source-drain electrode metal thin film; and patterning the oxide semiconductor thin film and the source-drain electrode metal thin film with a dual-tone mask so as to form the active layer, the source electrode and the drain electrode by a single patterning process.
Abstract:
The present invention discloses a touch screen substrate and a method of manufacturing the same. The touch screen substrate includes a capacitance layer comprising a plurality of electrodes, a first cover layer formed on the capacitance layer; a plurality of conductive bridges located on the first cover layer and configured to be electrically connected to a part of the electrodes that are electrically isolated; and a plurality of electrical connection lines, configured to respectively be electrically connected to the respective conductive bridge so as to electrically connect the first electrode with a touch detecting circuit. A material layer for forming the electrical connection lines is different from a material layer for forming the conductive bridges such that the conductive bridges located below the electrical connection lines are not corroded when the material layer for the electrical connection lines is etched. Utilization of different chemical properties of copper and silver nanowires and ITO material and inclusion of a single patterning process increase productivity and yield.
Abstract:
The embodiments of the invention disclose a hollow white composite quantum dot preparation method, a display panel and a display device. In the preparation method, unicolor quantum dots of different colors are prepared into corresponding unicolor quantum dot emulsions through an emulsion polymerization technique, dissolved silicon dioxide nano particles are used as a seed solution, the individual unicolor quantum dot emulsions are dropped in the seed solution in sequence, such that the surfaces of the silicon dioxide nano particles are coated with the unicolor quantum dots in the individual unicolor quantum dot emulsions in sequence according to the dropping order so as to obtain white composite quantum dots, and finally, the silicon dioxide nano particles in the white composite quantum dots are removed to obtain hollow white composite quantum dots. The hollow white composite quantum dot particles obtained by the preparation method are controllable in particle size and uniform in size, and the problems of low quantum efficiency, poor stability of quantum dots, and the like are solved; besides, the color gamut of the hollow white composite quantum dots can be adjusted, so that the applicability is high, and the application range is wide; in addition, the preparation method is simple, and a batch production is facilitated.
Abstract:
An array substrate and a manufacturing method thereof, and a display device are provided. The array substrate includes: a plurality of pixel units arranged in an array, each of the pixel units including a first transparent electrode and a color filter unit opposite to each other. A first insulating layer is disposed between the first transparent electrode and the color filter unit, a protrusion is provided between adjacent first transparent electrodes, and a vertex of the protrusion is higher than an upper surface of the first transparent electrode.
Abstract:
The embodiments of the invention disclose a hollow white composite quantum dot preparation method, a display panel and a display device. In the preparation method, unicolor quantum dots of different colors are prepared into corresponding unicolor quantum dot emulsions through an emulsion polymerization technique, dissolved silicon dioxide nano particles are used as a seed solution, the individual unicolor quantum dot emulsions are dropped in the seed solution in sequence, such that the surfaces of the silicon dioxide nano particles are coated with the unicolor quantum dots in the individual unicolor quantum dot emulsions in sequence according to the dropping order so as to obtain white composite quantum dots, and finally, the silicon dioxide nano particles in the white composite quantum dots are removed to obtain hollow white composite quantum dots. The hollow white composite quantum dot particles obtained by the preparation method are controllable in particle size and uniform in size, and the problems of low quantum efficiency, poor stability of quantum dots, and the like are solved; besides, the color gamut of the hollow white composite quantum dots can be adjusted, so that the applicability is high, and the application range is wide; in addition, the preparation method is simple, and a batch production is facilitated.