Abstract:
An array substrate is provided, wherein a pixel electrode has the same material as a source/drain and has a thickness less than that of the source/drain, or a common electrode has the same material as a gate and has a thickness less than that of the gate, which guarantees transmittance of the array substrate while reducing the process complexity. A display device and a manufacturing method of the array substrate are also provided.
Abstract:
An array substrate, manufacturing method thereof and a display device are provided. The array substrate comprises thin film transistor units (2) arranged in array, and further comprises a quantum dot layer (3) disposed over the thin film transistor units (2). The quantum dot layer includes at least three kinds of quantum dots, any one kind of which emits light of a respective wave band when being irradiated and excited by light from an incident portion of the array substrate. The array substrate can improve color gamut range, transmittance of a display device without increasing the power consumption of the display device.
Abstract:
The present disclosure provides a light emitting device, a production method thereof, and a display panel, for simplifying the production process of light emitting device and improving the performance of the light emitting device. The light emitting device in the present disclosure comprises a white light emitting layer comprising a polyfluorene blue light material, and red light quantum dots and green light quantum dots doped in the polyfluorene blue light material.
Abstract:
Disclosed are a light-emitting composite film, its manufacture method, and a white light organic electroluminescent device. Said light-emitting composite film comprises a first light-emitting layer and a second light-emitting layer. The first light-emitting layer comprises polyfluorene or polyfluorene derivatives, and the second light-emitting layer comprises quantum dots. A variety of color gamut and an improved brightness of devices can be achieved by the light-emitting composite film.
Abstract:
Embodiments of the invention relate to a composite film and a fabrication method thereof, a photoelectric element and a photoelectric apparatus. The fabrication method of the composite film includes: preparing a polyfluorene-based compound solution, wherein the polyfluorene-based compound solution includes polyfluorene or polyfluorene derivatives; preparing a quantum dot solution; mixing the polyfluorene-based compound solution and the quantum dot solution together to prepare a mixed solution; removing a solvent in the mixed solution to prepare the composite film.
Abstract:
The present application discloses a liquid crystal display device and a backlight module thereof. The backlight module comprises a backboard, a separating plate, and a light source component; wherein the backboard has a base plate and a plurality of side plates, and the backboard is an injection molding board; the separating plate is mounted in an accommodating groove, a heat dissipation chamber is formed between the separating plate and the base plate, in the heat dissipation chamber, the backboard is provided with convection holes; the light source component comprises a plurality of lamp substrates and a plurality of LED lamps mounted on the lamp substrates, the lamp substrates are located within the heat dissipation chamber, and the separating plate is provided with transparent holes enabling light emitted by each of the LED lamps to penetrate the separating plate in a thickness direction of the separating plate.
Abstract:
The invention provides a method for patterning a graphene layer and a method for manufacturing a display substrate. The method for patterning a graphene layer comprises: forming an isolation layer on a graphene layer; forming a photoresist layer on the isolation layer; patterning the photoresist layer; etching the isolation layer according to the patterned photoresist layer to form a patterned isolation layer; etching the graphene layer according to the patterned photoresist layer to form a patterned graphene layer; and removing the patterned isolation layer. In the method of the invention, the unfavorable condition of the prior art may be avoided that a graphene film sloughs off or a photoresist remains on a graphene film when a photoresist material is peeled off, and the product yield can be improved in the case that the production cost is controlled.
Abstract:
The embodiments of the invention disclose a hollow white composite quantum dot preparation method, a display panel and a display device. In the preparation method, unicolor quantum dots of different colors are prepared into corresponding unicolor quantum dot emulsions through an emulsion polymerization technique, dissolved silicon dioxide nano particles are used as a seed solution, the individual unicolor quantum dot emulsions are dropped in the seed solution in sequence, such that the surfaces of the silicon dioxide nano particles are coated with the unicolor quantum dots in the individual unicolor quantum dot emulsions in sequence according to the dropping order so as to obtain white composite quantum dots, and finally, the silicon dioxide nano particles in the white composite quantum dots are removed to obtain hollow white composite quantum dots. The hollow white composite quantum dot particles obtained by the preparation method are controllable in particle size and uniform in size, and the problems of low quantum efficiency, poor stability of quantum dots, and the like are solved; besides, the color gamut of the hollow white composite quantum dots can be adjusted, so that the applicability is high, and the application range is wide; in addition, the preparation method is simple, and a batch production is facilitated.
Abstract:
The embodiments of the invention disclose a hollow white composite quantum dot preparation method, a display panel and a display device. In the preparation method, unicolor quantum dots of different colors are prepared into corresponding unicolor quantum dot emulsions through an emulsion polymerization technique, dissolved silicon dioxide nano particles are used as a seed solution, the individual unicolor quantum dot emulsions are dropped in the seed solution in sequence, such that the surfaces of the silicon dioxide nano particles are coated with the unicolor quantum dots in the individual unicolor quantum dot emulsions in sequence according to the dropping order so as to obtain white composite quantum dots, and finally, the silicon dioxide nano particles in the white composite quantum dots are removed to obtain hollow white composite quantum dots. The hollow white composite quantum dot particles obtained by the preparation method are controllable in particle size and uniform in size, and the problems of low quantum efficiency, poor stability of quantum dots, and the like are solved; besides, the color gamut of the hollow white composite quantum dots can be adjusted, so that the applicability is high, and the application range is wide; in addition, the preparation method is simple, and a batch production is facilitated.
Abstract:
A double-sided display apparatus and a method of manufacturing the same are provided. The double-sided display apparatus includes a first substrate and a second substrate arranged opposite to each other; a first transparent electrode and a second reflective electrode arranged on the first substrate; a first reflective electrode opposed to the first transparent electrode on the first substrate and a second transparent electrode opposed to the second reflective electrode on the first substrate arranged on the second substrate; and a quantum light-emitting layer arranged between the respectively corresponded transparent electrodes and reflective electrodes, the quantum light-emitting layer including charge transport particles and QD light-emitting material mixed therein. The provided double-sided display apparatus is lighter, thinner, more portable, and of low cost.