摘要:
A grid assembly coupled to a discharge chamber of an ion beam source is configured for steering ion beamlets emitted from the discharge chamber at circularly asymmetrically determined steering angles. The grid assembly includes at least first and a second grid with a substantially circular pattern of holes, wherein each grid comprises holes positioned adjacent to one another. A plurality of the holes of the second grid is positioned with offsets relative to corresponding holes in the first grid. Due to the offsets in the holes in the second grid, ions passing through the offset holes are electrostatically attracted towards the closest circumferential portion of the downstream offset holes. Thus, the trajectories of ions passing through the offset holes are altered. The beamlet is steered by predetermined asymmetric angles. The predetermined steering angles are dependent upon the hole offsets, voltage applied to the grids, and the distance between the grids.
摘要:
An ion beam is generated and the energy of this ion beam is changed from a first energy to a second energy through, for example, acceleration or deceleration. A portion of the ion beam is blocked after the energy is changed and the ion beam is implanted into a workpiece. A plurality of blockers may be used to block the beam. Each blocker may be attached to a drive unit configured to translate one of the blockers in a first direction.
摘要:
A charged particle optical system comprising a beamlet generator for generating a plurality of beamlets of charged particles and an electrostatic deflector for deflecting the beamlets. The electrostatic deflector comprises first and second electrodes adapted for connection to a voltage for generating an electric field between the electrodes for deflection of the beamlets, the electrodes being at least partially freestanding in an active area of the electrostatic deflector. The electrodes define at least one passing window for passage of at least a portion of the beamlets between the electrodes, the passing window having a length in a first direction and a width in a transverse direction. The system is adapted to arrange the beamlets in at least one row and to direct a single row of the beamlets through the passing window of the electrostatic deflector, the beamlets of the row extending in the first direction. A substantial part of the electrostatic deflector extends beyond the passing window in the first direction.
摘要:
One embodiment of this fastening apparatus comprises a cap with a passage through the length of the cap. This cap is received by the upper panels of a body. The embodiments of this fastening apparatus may have two or more upper panels that form a recess. The body also has a lower region with a passage. The upper panels are flexible and can translate to retain the cap within the recess. A threaded member is disposed in the passage of the body. This cap may be fabricated of graphite in one instance.
摘要:
A variable aperture within an aperture device is used to shape the ion beam before the substrate is implanted by shaped ion beam, especially to finally shape the ion beam in a position right in front of the substrate. Hence, different portions of a substrate, or different substrates, can be implanted respectively by different shaped ion beams without going through using multiple fixed apertures or retuning the ion beam each time. In other words, different implantations may be achieved respectively by customized ion beams without high cost (use multiple fixed aperture devices) and complex operation (retuning the ion beam each time). Moreover, the beam tune process for acquiring a specific ion beam to be implanted may be accelerated, to be faster than using multiple fixed aperture(s) and/or retuning the ion beam each time, because the adjustment of the variable aperture may be achieved simply by mechanical operation.
摘要:
An apparatus and method for forming a carbon protective layer on a substrate using a plasma CVD method allows a more uniform in-plane distribution of the carbon protective layer thickness. The apparatus includes an annular anode that generates a plasma beam and a disk-shaped shield disposed between the anode and the substrate. The anode, the shield, and the substrate are concentrically arranged so that a straight line connecting the centers of the anode and the substrate is perpendicular to the deposition surface of the substrate where the carbon protective layer is to be formed. The center of the shield is also on the straight line.
摘要:
In an ion implanting apparatus 10 including a separation slit 20 which receives an ion beam 1 having passed through a mass-separation electromagnet 17 and allows a desired type of ion to selectively pass therethrough, the separation slit 20 is operable to vary a shape of a gap through which the ion beam 1 passes. In addition, the ion implanting apparatus 10 includes a variable slit 30 which is disposed between an extraction electrode system 15 and the mass-separation electromagnet 17 so as to form a gap through which the ion beam 1 passes and is operable to vary a shape of the gap so as to shield a part of the ion beam 1 extracted from the ion source 12. The ion implanting apparatus 10 may include both or one of the separation slit 20 and the variable slit 30.
摘要:
An object of the present invention is to provide a scanning electron microscope aiming at making it possible to control the quantity of electrons generated by collision of electrons emitted from a sample with other members, and a sample charging control method using the control of electron quantity. To achieve the object, a scanning electron microscope including a plurality of apertures through which an electron beam can pass and a mechanism for switching the apertures for the electron beam, and a method for controlling sample charging by switching the apertures are proposed. The plurality of apertures are at least two apertures. Portions respectively having different secondary electron emission efficiencies are provided on peripheral portions of the at least two apertures on a side opposed to the sample. The quantity of electrons generated by collision of electrons emitted from the sample can be controlled by switching the apertures.
摘要:
A multipurpose ion implanter beam line configuration comprising a mass analyzer magnet followed by a magnetic scanner and magnetic collimator combination that introduce bends to the beam path, the beam line constructed for enabling implantation of common monatomic dopant ion species cluster ions, the beam line configuration having a mass analyzer magnet defining a pole gap of substantial width between ferromagnetic poles of the magnet and a mass selection aperture, the analyzer magnet sized to accept an ion beam from a slot-form ion source extraction aperture of at least about 80 mm height and at least about 7 mm width, and to produce dispersion at the mass selection aperture in a plane corresponding to the width of the beam, the mass selection aperture capable of being set to a mass-selection width sized to select a beam of the cluster ions of the same dopant species but incrementally differing molecular weights, the mass selection aperture also capable of being set to a substantially narrower mass-selection width and the analyzer magnet having a resolution at the selection aperture sufficient to enable selection of a beam of monatomic dopant ions of substantially a single atomic or molecular weight, the magnetic scanner and magnetic collimator being constructed to successively bend the ion beam in the same sense, which is in the opposite sense to that of the bend introduced by the analyzer magnet of the beam line.
摘要:
An apparatus is provided for reducing particle contamination in an ion implantation system. The apparatus has an enclosure having an entrance, an exit, and at least one louvered side having a plurality of louvers defined therein. A beamline of the ion implantation system passes through the entrance and exit, wherein the plurality of louvers of the at least one louvered side are configured to mechanically filter an edge of an ion beam traveling along the beamline. The enclosure can have two louvered sides and a louvered top, wherein respective widths of the entrance and exit of the enclosure, when measured perpendicular to the beamline, are generally defined by a position of the two louvered sides with respect to one another. One or more of the louvered sides can be adjustably mounted, wherein the width of one or more of the entrance and exit of the enclosure is controllable.