Abstract:
A composite material comprising a substrate and a deposition product and the use of a deposition product for providing an antimicrobial effect. The substrate of the composite material is a medical device. Further, in each of the composite material and the use, the deposition product consists essentially of at least one oxidized silver species and wherein the deposition product is comprised of a compound having the formula Ag7O8X, where X is an anion.
Abstract:
There is provided a cyanide-free immersion type electroless gold plating liquid that is low in toxicity, can be used near a neutral ph, and has a good solder adhesion and plating film adhesion. The electroless gold plating liquid contains a cyanide-free water-soluble gold compound and a pyrosulfurous acid compound. The plating liquid may further contain a sulfurous acid compound and an aminocarboxylic acid compound. Pyrosulfurous acid or an alkali metal, alkaline earth metal, ammonium, or another such salt thereof can be used as the pyrosulfurous acid compound.
Abstract:
A method of forming microstructures. An article including a metal atom precursor is disproportionally exposed to electromagnetic radiation in an amount and intensity sufficient to convert some of the precursor to elemental metal. Additional conductive material may then be deposited onto the elemental metal to produce a microstructure.
Abstract:
A new substrate makes it possible to modify surface properties relating to biocompatibility. Said substrate has an electron donating surface, characterized in having metal particles on said surface, said metal particles comprising palladium and at least one metal chosen from gold, ruthenium, rhodium, osmium, iridium, and platinum, wherein the amount of said metal particles is from about 0.001 to about 8 μg/cm2. The substrate is suggested for different uses, such as for modifying the hydrophobicity, protein adsorption; tissue ingrowth, complement activation, inflammatory response, thrombogenicity, friction coefficient, and surface hardness.
Abstract:
The invention is directed to a solution and process for improving the solderability of a metal surface. In one embodiment, the invention is a silver deposit solution comprising an acid, a source of silver ions, and an additive selected from among pyrroles, triazoles, and tetrazoles, as well as derivatives and mixtures of those components. In another embodiment, the silver deposit solution also includes a 6-membered heterocyclic ring compound, wherein three members of the 6-membered heterocyclic ring are nitrogen atoms. Still another embodiment is a process for improving the solderability of a metal surface which involves applying a silver deposit solution as previously described to a metal surface.
Abstract:
Disclosed are methods of depositing electroless gold layers on a metal substrate using a catalytic palladium deposit. Such electroless gold layers have increased adhesion as compared to conventional electroless gold deposits.
Abstract:
Known methods of improving the solderability of copper surfaces on printed circuit boards present the disadvantage that outer layers of an irregular thickness are formed at the metal surfaces, that these layers are very expensive or that the constituents used in manufacturing them are harmful to the environment. Furthermore, the metal surfaces are to be suited to form bond connections as well as electrical contacts. To overcome these problems there are disclosed a bath and a method of electroless plating of silver by way of charge exchange reaction on surfaces of metals that are less noble than silver, more particularly on copper, that contain at least one silver halide complex and not containing any reducing agent for Ag+ ions.
Abstract:
A method for forming a metal pattern, characterized in that it comprises applying a photosensitive resin composition containing a polysilane having a weight average molecular weight of 10,000 or more and being soluble in an organic solvent, a photosensitive radical generating agent, an oxidizing agent, an alkoxy group-containing silicone compound and an organic solvent on a substrate, to form a photosensitive layer, exposing a region of the photosensitive layer corresponding with the metal pattern to a light, followed by developing, to thereby form a groove in the photosensitive layer, contacting the photosensitive layer with a solution containing a palladium salt or the like, to thereby allow an exposed part in the groove to absorb palladium or the like, contacting the photosensitive layer with an electroless plating solution, to thereby deposit a metal film on the part in the groove having absorbed palladium or the like and form the metal pattern.
Abstract:
A method for forming a metallic mirror surface on a receiving surface is shown. The method comprises the steps of: cleaning the underlay surface; spraying on the receiving surface an activating treatment agent solution wherein the activating treatment agent solution contains a hydrochloric acid solution including about 10 cc to about 44 cc of hydrochloric acid, about 1.5 g to about 5 g of stannous chloride and about 0.001 g to about 0.005 g of a precious metal salt of at least one of a silver nitrate, palladium chloride, gold chloride and platinum chloride per 1 liter of water for use as an activating treatment agent for forming a metallic mirror surface on a receiving surface which is treated with the hydrochloric acid solution as an activating treatment agent solution; and separately spraying concurrently on the underlay surface a reacting metal salt and a reducing agent to form the metallic mirror surface.
Abstract:
The present invention relates to a method for activation of a cathode comprising at least a cathode substrate wherein the cathode is cleaned by means of an acid, the cleaned cathode is coated with at least one electrocatalytic coating solution, drying the coated cathode until it is at least substantially dry, and thereafter contacting the cathode with a solvent redissolving precipitated electrocatalytic salts or acids formed on the cathode, originating from the electrocatalytic solution, to form dissolved electrocatalytic metal ions on the cathode surface, so that said electrocatalytic metal ions can precipitate as metals on the cathode. The invention also comprises a cathode obtainable by the method and the use of an activated cathode in an electrolytic cell for producing chlorine and alkali hydroxide.