Abstract:
An inventive vertical spin-dryer is provided. The inventive spin-dryer may have a shield system positioned to receive fluid displaced from a substrate vertically positioned within the spin-dryer. The shield system may have one or more shields positioned to at least partially reflect fluid therefrom as the fluid impacts the shield. The one or more shields are angled to encourage the flow of fluid therealong, and are preferably hydrophilic to prevent droplets from forming. Preferably the shield system has three shields positioned in a horizontally and vertically staggered manner so that fluid is transferred from a substrate facing surface of a first shield to the top or non-substrate-facing surface of an adjacent shield, etc. A pressure gradient may be applied across the interior of the spin-dryer to create an air flow which encourages fluid to travel along the shield system in a desired direction. A sensor adapted to facilitate desired flywheel position, an openable gripper having a remote actuator, a radiused gripper and a source of inert drying gas are also provided in individual embodiments.
Abstract:
The polishing pad for a chemical mechanical polishing apparatus, and a method of making the same. The polishing pad has a covering layer with a polishing surface and a backing layer which is adjacent to the platen. A first opening in the covering layer with a first cross-sectional area and a second opening in the backing layer with a second, different cross-sectional area form an aperture through the polishing pad. A substantially transparent polyurethane plug is positioned in the aperture, and an adhesive material fixes the plug in the aperture.
Abstract:
A computer-implemented method for process control in chemical mechanical polishing in which an initial pre-polishing thickness of a substrate is measured at a metrology station, a parameter of an endpoint algorithm is determined from the initial thickness of the substrate, a substrates is polished at a polishing station, and polishing stops when an endpoint criterion is detected using the endpoint algorithm.
Abstract:
A CMP station can be closed loop controlled by using data obtained by an inline metrology station from a first polished wafer to affect the processing of subsequent polished wafers. The first wafer is polished and measured by the inline metrology station. The metrology station measures at various points the array dielectric thickness, field dielectric thickness, barrier residue thickness and metal residue thickness. The data is then inputted into an algorithm and polishing parameter outputs are calculated. The outputs are sent to the CMP station and used to supplement or replace the previous polishing parameters. Subsequent wafers are polished on the CMP station using the revised polishing parameters.
Abstract:
A chemical mechanical polishing apparatus and method can use an eddy current monitoring system and an optical monitoring system. Signals from the monitoring systems can be combined on an output line and extracted by a computer. A thickness of a polishing pad can be calculated. The eddy current monitoring system and optical monitoring system can measure substantially the same location on the substrate.
Abstract:
A chemical mechanical polishing apparatus has a polishing pad, a carrier to hold a substrate against a first side of the polishing surface, and a motor coupled to at least one of the polishing pad and carrier head for generating relative motion therebetween. An eddy current monitoring system is positioned to generate an alternating magnetic field in proximity to the substrate, an optical monitoring system generates a light beam and detects reflections of the light beam from the substrate, and a controller receives signals from the eddy current monitoring system and the optical monitoring system.
Abstract:
A method and apparatus are provided for polishing a substrate surface. In one aspect, an apparatus for polishing a substrate includes a conductive polishing pad and an electrode having a membrane disposed therebetween. The membrane is orientated relative the conductive pad in a manner that facilitates removal of entrained gas from electrolyte flowing towards the conductive pad. The apparatus may be part of an electro-chemical polishing station that may optionally be part of a system that includes chemical mechanical polishing stations.
Abstract:
The CMP removal rate of a fixed abrasive article is increased and wafer-to-wafer uniformity enhanced by thermal preconditioning. Embodiments include preconditioning a fixed abrasive article by heating with hot water to a temperature of about 90° C. to about 100° C. to increase and stabilize the Cu or Cu alloy CMP removal rate.
Abstract:
An apparatus and method of chemical mechanical polishing (CMP) of a wafer employing a device for determining, in-situ, during the CMP process, an endpoint where the process is to be terminated. This device includes a laser interferometer capable of generating a laser beam directed towards the wafer and detecting light reflected from the wafer, and a window disposed adjacent to a hole formed through a platen. The window provides a pathway for the laser beam during at least part of the time the wafer overlies the window.
Abstract:
Generally, a method and apparatus for cleaning a backside of a web of polishing material. In one embodiment, the apparatus includes a platen having a support surface adapted to support the backside the web and a web cleaner disposed on the platen and adjacent the backside of the web. A method for cleaning a web of polishing material is also provided. In one embodiment, the method includes the steps of supporting a portion of the web of polishing media on a platen, advancing a portion of the web onto the platen, and cleaning the unrolled portion of the web.