Abstract:
A chemical mechanical polishing apparatus and method can use an eddy current monitoring system and an optical monitoring system. Signals from the monitoring systems can be combined on an output line and extracted by a computer. A thickness of a polishing pad can be calculated. The eddy current monitoring system and optical monitoring system can measure substantially the same location on the substrate.
Abstract:
A chemical mechanical polishing apparatus has a polishing pad, a carrier to hold a substrate against a first side of the polishing surface, and a motor coupled to at least one of the polishing pad and carrier head for generating relative motion therebetween. An eddy current monitoring system is positioned to generate an alternating magnetic field in proximity to the substrate, an optical monitoring system generates a light beam and detects reflections of the light beam from the substrate, and a controller receives signals from the eddy current monitoring system and the optical monitoring system.
Abstract:
Methods and apparatus to implement techniques for monitoring polishing a substrate. Two or more data points are acquired, where each data point has a value affected by features inside a sensing region of a sensor and corresponds to a relative position of the substrate and the sensor as the sensing region traverses through the substrate. A set of reference points is used to modify the acquired data points. The modification compensates for distortions in the acquired data points caused by the sensing region traversing through the substrate. Based on the modified data points, a local property of the substrate is evaluated to monitor polishing.
Abstract:
A system includes a measuring station for positioning an eddy current probe proximate to a substrate in a substrate holder. The probe can produce a time-varying magnetic field, in order to induce eddy currents in one or more conductive regions of a substrate either prior to or subsequent to polishing. The eddy current signals are detected, and may be used to update one or more polishing parameters for a chemical mechanical polishing system. The substrate holder may be located in a number places; for example, in a substrate transfer system, a factory interface module, a cleaner, or in a portion of the chemical mechanical polishing system away from the polishing stations. Additional probes may be used.
Abstract:
A chemical mechanical polishing apparatus and method can use an eddy current monitoring system and an optical monitoring system. Signals from the monitoring systems can be combined on an output line and extracted by a computer. A thickness of a polishing pad can be calculated. The eddy current monitoring system and optical monitoring system can measure substantially the same location on the substrate.
Abstract:
A system includes a measuring station for positioning an eddy current probe proximate to a substrate in a substrate holder. The probe can produce a time-varying magnetic field, in order to induce eddy currents in one or more conductive regions of a substrate either prior to or subsequent to polishing. The eddy current signals are detected, and may be used to update one or more polishing parameters for a chemical mechanical polishing system. The substrate holder may be located in a number places; for example, in a substrate transfer system, a factory interface module, a cleaner, or in a portion of the chemical mechanical polishing system away from the polishing stations. Additional probes may be used.
Abstract:
A sensor for monitoring a conductive film in a substrate during chemical mechanical polishing generates an alternating magnetic field that impinges a substrate and induces eddy currents. The sensor can have a core, a first coil wound around a first portion of the core and a second coil wound around a second portion of the core. The sensor can be positioned on a side of the polishing surface opposite the substrate. The sensor can detect a phase difference between a drive signal and a measured signal.
Abstract:
A sensor for monitoring a conductive film in a substrate during chemical mechanical polishing generates an alternating magnetic field that impinges a substrate and induces eddy currents. The sensor can have a core, a first coil wound around a first portion of the core and a second coil wound around a second portion of the core. The sensor can be positioned on a side of the polishing surface opposite the substrate. The sensor can detect a phase difference between a drive signal and a measured signal.
Abstract:
A sensor for monitoring a conductive film in a substrate during chemical mechanical polishing generates an alternating magnetic field that impinges a substrate and induces eddy currents. The sensor can have a core, a first coil wound around a first portion of the core and a second coil wound around a second portion of the core. The sensor can be positioned on a side of the polishing surface opposite the substrate. The sensor can detect a phase difference between a drive signal and a measured signal.
Abstract:
An apparatus, as well as a method, brings a surface of a substrate into contact with a polishing pad that has a window, causes relative motion between the substrate and the polishing pad, and directs a light beam through the window so that the motion of the polishing pad relative to the substrate causes the light beam to move in a path across the substrate. An extreme intensity measurement is derived from a plurality of intensity measurements made as the light beam moves across the substrate. The beam sweeps across the substrate a plurality of times to generate a plurality of extreme intensity measurements, and a polishing endpoint is detected based on the plurality of extreme intensity measurements.