Abstract:
Methods for selectively depositing different materials at diffe ent locations on a substrate are provided. A selective deposition process may form different materials on different surfaces, e.g., different portions of the substrate, depending on the material properties of the underlying layer being deposited on on implantation processes may be used to modify materials disposed on the substrate. The ions modify surface properties of the substrate to enable the subsequent selective deposition process. A substrate having a mask disposed thereon may be subjected to an on implantation process to modify the mask and surfaces of the substrate exposed by the mask. The mask may be removed which results in a substrate having regions of implanted and non-implanted materials. A subsequent deposition process may be performed to selectively deposit on either the implanted or non-implanted regions of the substrate.
Abstract:
Embodiments described herein generally relate to biomedical devices including a porous layer forming a support structure for a biological probe and methods of making the same. The porous layer can be a porous silicon containing layer. The pore size can be adjusted such that various size biological probes can be incorporated into the pores. Further, the porous silicon containing layer can be used to support a biofunctionalizing layer.
Abstract:
Embodiments of the present disclosure generally relate to imprint compositions and materials and related processes useful for nanoimprint lithography (NIL). In one or more embodiments, a method for preparing an imprinted surface is provided and includes disposing an imprint composition on a substrate, contacting the imprint composition with a stamp having a pattern, converting the imprint composition to an imprint material having the pattern, and removing the stamp from the imprint material. The imprint composition may contain one or more types of nanoparticles, one or more surface ligands, one or more solvents, one or more additives, and one or more acrylates.
Abstract:
Embodiments described herein provide for devices and methods of measuring a pitch P of optical device structures and an orientation angle ϕ of the optical device structures. One embodiment of the system includes an optical arm coupled to an arm actuator. The optical arm includes a light source. The light source emits a light path operable to be diffracted to the stage. The optical arm further includes a first beam splitter and a second beam splitter positioned in the light path. The first beam splitter directs the light path through a first lens and the second beam splitter directs the light path through a first dove prism and a second lens. The optical arm further includes a first detector operable to detect the light path from the first lens and second detector operable to detect the light path from the second lens.
Abstract:
Embodiments described herein relate to encapsulated nanostructured optical devices and methods of encapsulating gratings of such devices by asymmetric selective physical vapor deposition (PVD). In some embodiments, a method for encapsulating optical device gratings includes a first PVD process and a second PVD process that may be carried out simultaneously or sequentially. The first PVD process may provide a first stream of material at a first angle non-perpendicular to a substrate of the grating. The second PVD process may provide a second stream of material at a second angle non-perpendicular to the substrate of the grating. The combination of the first PVD process and the second PVD process forms an encapsulation layer over the grating and one or more air gaps between adjacent fins of the grating.
Abstract:
An optical device coating assembly is provided. The optical device coating assembly includes a substrate support operable to retain an optical device substrate. The coating assembly further includes a first actuator connected to the substrate support. The first actuator is configured to rotate the substrate support. The coating assembly includes a holder configured to hold a coating applicator against an edge of the optical device substrate when the optical device substrate is rotated on the substrate support and a second actuator operable to apply a force on the holder in a direction towards the substrate support. The second actuator is a constant force actuator.
Abstract:
A system, software application, and method for optical device metrology of optical device patterns formed from lithography stitching are provided. In one example, the method includes creating a stitched design file comprising images of a plurality of masks; defining target coordinates for each of the plurality of masks in the stitched design file; defining an alignment mark for the stitched design file; capturing images of an optical device pattern at each of the target coordinates; comparing the captured images of the optical device pattern at each of the target coordinates to virtual images of the stitched design file at each of the target coordinates; and determining whether the optical device pattern at each of the target coordinates meets a threshold value.
Abstract:
Embodiments of the present disclosure generally relate to methods for forming features having small and large line widths on the same substrate or device. In some embodiments, the methods described and discussed herein can be used to produce optical and photonic devices. These devices, including augmented reality (AR) devices and/or virtual reality (VR) devices, have desired pattern areas with different features and/or line widths to achieve the desired optical performance.
Abstract:
Embodiments of the present disclosure generally relate to composite PVD target. The target has a diameter, a connection face, a substrate face opposite the connection face, a thickness between the connection face and the substrate face, and a material distribution. The material distribution includes a silicon containing material arranged in a pattern, and a titanium containing material arranged in the pattern. The material distribution is uniform at any point along the thickness.
Abstract:
A method and apparatus for forming an optical device are described. The optical device is formed by depositing a plurality of ink drops on a surface of a substrate. The plurality of ink drops are contained within a chemical stopper, such that the chemical stopper surrounds each individual ink drop. The chemical stopper is configured to reduce reflow of the ink drops and is a fraction of the height of each of the ink drops. The ink drops are baked after being deposited within the chemical stoppers as liquid ink drops.