Abstract:
A programming circuit used with a semiconductor memory comprising normal as well as spare memory cells allows any of the normal memory cells to be replaced by a spare memory cell and includes a fuse and a MOSFET connected in series between first and second power supply terminals. A voltage signal at the junction between the fuse and the MOSFET is delivered to the gate of the MOSFET after being delayed after power is supplied.
Abstract:
A semiconductor memory comprising a memory array having a plurality of memory cells, such as floating gate type MOS transistors, arranged in a matrix form with column lines and row lines, and a plurality of bit outputs. The plurality of column lines are associated with each bit output. A circuit is provided which applies a program voltage to a plurality of column lines corresponding to each bit output in response to address signals or control signals. A plurality of memory cells corresponding to each bit output are programmed simultaneously by the circuit.
Abstract:
Disclosed is a nonvolatile semiconductor memory device in which the difference in level between a reference signal and the output signal of a memory array formed of floating gate MOS FETs is decided by means of a differential sense amplifier, and the result of the decision provides memory data. The reference signal is produced by a gate signal generator which produces a gate signal at a fixed voltage level at the time of testing and a gate signal at a voltage level obtained by dividing the supply voltage at the time of normal reading, and a reference signal generator which produces a reference signal at a level corresponding to the conductive resistance of a floating gate MOS FET with the same configuration of each memory cell whose control gate is supplied with the gate signal.
Abstract:
Disclosed is a metal oxide semiconductor integrated circuit device having an array of electrically rewritable, insulated gate type non-volatile semiconductor memory cells formed on a semiconductor substrate, read/write mode setting circuit and address designating circuits arranged corresponding to the memory cell array, those circuits being fabricated on the substrate, and a field insulating layer formed on the substrate. A cut portion is formed in the field insulating layer to surround the memory cell array.
Abstract:
There is provided a nonvolatile semiconductor memory device which comprises memory cells arranged in the form of a matrix and formed of MOS FET's each having a floating gate, a plurality of word lines each coupled to memory cells on the same row, and a plurality of data lines each coupled to memory cells on the same column. In this semiconductor memory device, the sources of the MOS FET's forming the memory cells are coupled to a resistor.
Abstract:
In a non-volatile semiconductor memory, a large current can be flowed through the memory cell during reading. The number of the column lines can be reduced. The electron injection to the floating gates of the respective memory cells is averaged to reduce the dispersion of the threshold voltages thereof. The electron emission from the floating gates of the respective memory cells is also averaged to reduce the dispersion of the threshold voltages thereof. An increase in chip size due to latch circuits can be prevented. By noting that either of a plurality of “0” or “1” of the binary data are stored such in the memory cells of the memory cell bundle or block, a negative threshold voltage is allocated to the memory cells for storing the more bit side data of the binary data. A single column line is used in common for the two adjacent memory blocks. To inject electrons to the floating gates of the memory cells, voltage is increased gradually and stopped when electrons have been injected up to a predetermined injection rate. Electrons are once emitted from the floating gates, and thereafter the electrons are injected again to store one of a binary data. Further, the date latch circuits can be formed at any positions remote from the memory cell array.
Abstract:
In a non-volatile semiconductor memory, a large current can be flowed through the memory cell during reading. The number of the column lines can be reduced. The electron injection to the floating gates of the respective memory cells is averaged to reduce the dispersion of the threshold voltages thereof. The electron emission from the floating gates of the respective memory cells is also averaged to reduce the dispersion of the threshold voltages thereof. An increase in chip size due to latch circuits can be prevented. By noting that either of a plurality of “0” or “1” of the binary data are stored such in the memory cells of the memory cell bundle or block, a negative threshold voltage is allocated to the memory cells for storing the more bit side data of the binary data. A single column line is used in common for the two adjacent memory blocks. To inject electrons to the floating gates of the memory cells, voltage is increased gradually and stopped when electrons have been injected up to a predetermined injection rate. Electrons are once emitted from the floating gates, and thereafter the electrons are injected again to store one of a binary data. Further, the data latch circuits can be formed at any positions remote from the memory cell array.
Abstract:
A row line selection circuit comprises first and second decoding sections and NMOS transistors. The first decoding section receives a first address signal and generates first selection signals. The second decoding section receives a second address signal and generates second selection signals. The NMOS transistors each of which has a gate for receiving one of the first selection signals, one end of a current path of each of the NMOS transistors being connected to receive the one of the second selection signals. The NMOS transistors classified into groups, each group including a predetermined number of the transistors which are prepared in correspondence with row lines lying adjacent to each other. One of the first selection signals is supplied to the predetermined number of NMOS transistors in one of the groups, and one of the second selection signals is supplied to one of the predetermined number of NMOS transistors in each group.
Abstract:
A nonvolatile semiconductor memory includes a memory cell string containing a selection transistor and at least one cell transistor which is connected to the selection transistor and has a floating gate. Cell transistors are arranged in a memory cell array. The transistors each have a charge accumulation layer. A potential supply circuit supplies a potential different from a ground potential to gates of the cell transistor at least read operation and when the memory cell array is unselected.
Abstract:
The current paths of a plurality of floating gate type MOSFETs are series-connected to form a series circuit. The series circuit is connected at one end to receive a reference voltage, and is connected to data programming and readout circuit. In the data programming mode, electrons are discharged from the floating gate to the drain of the MOSFET or holes are injected into the drain into the floating gate. The data readout operation is effected by checking whether current flows from the other end to the one end of the series circuit or not.