Abstract:
An electrostatic clamping system has an electrostatic chuck having one or more electrodes and a clamping surface and one or more fluid passages therethrough. A plurality of fluid sources has a respective plurality of fluids associated therewith, wherein each of the plurality of fluids are chemically distinct from one another and has a respective viable fluid temperature range associated therewith. A thermal unit is configured to heat and/or cool the plurality of fluids to one or more predetermined temperature setpoints. A valve assembly is configured to selectively fluidly couple each of the plurality of fluid sources to the one or more fluid passages of the electrostatic chuck. A controller is also configured to selectively fluidly couple the one or more fluid passages of the electrostatic chuck with a selected one or more of the plurality of fluid sources via a control of the valve assembly.
Abstract:
A workpiece carrier comprises a first plate having a first outer diameter, a first inner diameter, and a first recess extending a first distance from the first inner diameter toward the first outer diameter. The workpiece carrier further comprises a second plate having a second outer diameter, a second inner diameter, and a second recess extending a second distance from the second inner diameter toward the second outer diameter. A plurality of mating features associated with the first plate and second plate are configured to selectively fix a position of a first workpiece between the first plate and second plate within the first recess and second recess.
Abstract:
An ion implantation system and method are provided where an ion source generates an ion and a mass analyzer mass analyzes the ion beam. A beam profiling apparatus translates through the ion beam along a profiling plane in a predetermined time, wherein the beam profiling apparatus measures the beam current across a width of the ion beam concurrent with the translation, therein defining a time and position dependent beam current profile of the ion beam. A beam monitoring apparatus is configured to measure the ion beam current at an edge of the ion beam over the predetermined time, therein defining a time dependent ion beam current, and a controller determines a time independent ion beam profile by dividing the time and position dependent beam current profile of the ion beam by the time dependent ion beam current, therein by cancelling fluctuations in ion beam current over the predetermined time.
Abstract:
A Johnsen-Rahbek (J-R) electrostatic clamp is provided for clamping a workpiece, wherein the J-R clamp has a dielectric layer having a clamping surface associated with the workpiece and a backside surface generally opposing the clamping surface. The dielectric layer has a plurality of regions, wherein each of the plurality of regions comprises one of a plurality of dielectric materials. Each of the plurality of dielectric materials has a baseline resistivity that is different from the remainder of the plurality of dielectric materials, and each of the plurality of regions of the dielectric layer has a baseline resistivity that is different from the remainder of the plurality of regions of the dielectric layer. A plurality of electrically conductive electrodes are associated with the backside surface of the dielectric layer, wherein each of the plurality of electrically conductive electrodes are associated with one or more of the plurality of regions of the dielectric layer.
Abstract:
The present invention relates to a method and apparatus for varying the cross-sectional shape of an ion beam, as the ion beam is scanned over the surface of a workpiece, to generate a time-averaged ion beam having an improved ion beam current profile uniformity. In one embodiment, the cross-sectional shape of an ion beam is varied as the ion beam moves across the surface of the workpiece. The different cross-sectional shapes of the ion beam respectively have different beam profiles (e.g., having peaks at different locations along the beam profile), so that rapidly changing the cross-sectional shape of the ion beam results in a smoothing of the beam current profile (e.g., reduction of peaks associated with individual beam profiles) that the workpiece is exposed to. The resulting smoothed beam current profile provides for improved uniformity of the beam current and improved workpiece dose uniformity.
Abstract:
A method comprising introducing an injected gas (e.g., Argon, Xenon) into a beam line region comprising a magnetic scanner is provided herein. The injected gas improves beam current by enhancing (e.g., increasing, decreasing) charge neutralization of the magnetic ion beam (e.g., the ion beam at regions where the scanning magnetic field is non-zero) thereby reducing the current loss due to the zero field effect (ZFE). By reducing the current loss in regions having a magnetic field, the magnetic beam current is increased (e.g., the beam current is increased in regions where the magnetic field is non-zero) raising the overall beam current in a uniform manner over an entire scan path and thereby reducing the effect of the ZFE. In other words, the ZFE is removed by effectively minimizing it through an increase in the magnetized beam current.
Abstract:
A plasma apparatus, various components of the plasma apparatus, and an oxygen free and nitrogen free processes for effectively removing photoresist material and post etch residues from a substrate with a carbon and/or hydrogen containing low k dielectric layer(s).
Abstract:
A plasma ashing apparatus for removing organic matter from a substrate including a low k dielectric, comprising a first gas source; a plasma generating component in fluid communication with the first gas source; a process chamber in fluid communication with the plasma generating component; an exhaust conduit in fluid communication with the process chamber; wherein the exhaust conduit comprises an inlet for a second gas source and an afterburner assembly coupled to the exhaust conduit, wherein the inlet is disposed intermediate to the process chamber and an afterburner assembly, and wherein the afterburner assembly comprises means for generating a plasma within the exhaust conduit with or without introduction of a gas from the second gas source; and an optical emission spectroscopy device coupled to the exhaust conduit comprising collection optics focused within a plasma discharge region of the afterburner assembly. An endpoint detection process for an oxygen free and nitrogen free plasma process comprises monitoring an optical emission signal of an afterburner excited species in an exhaust conduit of the plasma asher apparatus. The process and apparatus can be used with carbon and/or hydrogen containing low k dielectric materials.
Abstract:
An end effector for installation on a robotic arm for transporting a plurality of semiconductor wafers from one location to another features a ceramic end effector body portion that includes a plurality of wafer engaging fingers that each feature wafer support pads. The wafer support pads are adapted to support a semiconductor wafer surface, and at least one of the support pads has a vacuum orifice. The body portion features an interior vacuum passageway having a first end that is adapted to connect to a vacuum source and a second end that terminates at the vacuum orifices such that a reduced gas pressure at the first end causes a vacuum to be exerted at the vacuum orifices. The interior passageway is formed from a groove in the end effector body portion and an end effector backplate that is sealingly connected to the end effector body portion to completely cover the groove from the first end to the second end. The ceramic body portion can be made of alumina or silicon carbide.
Abstract:
An ion implantation system includes an ion source that generates ions and produces an ion beam along a beamline, a mass analyzer positioned downstream of the ion source that generates a magnetic field according to a selected charge-to-mass ratio. A beamline formed by ion beam is directed to a workpiece target. A gating apparatus includes one or more of: a mechanical gating device configured to block or deflect the ion beam from contacting a workpiece target; or a power control gating device configured to cut off power to the ion source. The beam-to-workpiece target translation mechanism changes the beam-to-workpiece target position while the ion beam is gated by the gating apparatus. Methods for implanting ions in predetermined profiles on a workpiece are disclosed with multiple scans. These systems and methods allow for implantation profiles with smooth curvature and/or sharp differences in dosage characteristics at adjacent positions.