Abstract:
An ion implantation has an ion source and a mass analyzer configured to form and mass analyze an ion beam. A bending element is positioned downstream of the mass analyzer, and respective first and second measurement apparatuses are positioned downstream and upstream of the bending element and configured to determine a respective first and second ion beam current of the ion beam. A workpiece scanning apparatus scans the workpiece through the ion beam. A controller is configured to determine an implant current of the ion beam at the workpiece and to control the workpiece scanning apparatus to control a scan velocity of the workpiece based on the implant current. The determination of the implant current of the ion beam is based, at least in part, on the first ion beam current and second ion beam current.
Abstract:
An ion implantation system is provided having an ion implantation apparatus configured to provide a spot ion beam having a beam density to a workpiece, wherein the workpiece has a crystalline structure associated therewith. A scanning system iteratively scans one or more of the spot ion beam and workpiece with respect to one another along one or more axes. A controller is also provided and configured to establish a predetermined localized temperature of the workpiece as a predetermined location on the workpiece is exposed to the spot ion beam. A predetermined localized disorder of the crystalline structure of the workpiece is thereby achieved at the predetermined location, wherein the controller is configured to control one or more of the beam density of the spot ion beam and a duty cycle associated with the scanning system to establish the localized temperature of the workpiece at the predetermined location on the workpiece.
Abstract:
A method comprising introducing an injected gas (e.g., Argon, Xenon) into a beam line region comprising a magnetic scanner is provided herein. The injected gas improves beam current by enhancing (e.g., increasing, decreasing) charge neutralization of the magnetic ion beam (e.g., the ion beam at regions where the scanning magnetic field is non-zero) thereby reducing the current loss due to the zero field effect (ZFE). By reducing the current loss in regions having a magnetic field, the magnetic beam current is increased (e.g., the beam current is increased in regions where the magnetic field is non-zero) raising the overall beam current in a uniform manner over an entire scan path and thereby reducing the effect of the ZFE. In other words, the ZFE is removed by effectively minimizing it through an increase in the magnetized beam current.
Abstract:
An ion implantation system is provided having an ion implantation apparatus configured to provide a spot ion beam having a beam density to a workpiece, wherein the workpiece has a crystalline structure associated therewith. A scanning system iteratively scans one or more of the spot ion beam and workpiece with respect to one another along one or more axes. A controller is also provided and configured to establish a predetermined localized temperature of the workpiece as a predetermined location on the workpiece is exposed to the spot ion beam. A predetermined localized disorder of the crystalline structure of the workpiece is thereby achieved at the predetermined location, wherein the controller is configured to control one or more of the beam density of the spot ion beam and a duty cycle associated with the scanning system to establish the localized temperature of the workpiece at the predetermined location on the workpiece.
Abstract:
A method comprising introducing an injected gas (e.g., Argon, Xenon) into a beam line region comprising a magnetic scanner is provided herein. The injected gas improves beam current by enhancing (e.g., increasing, decreasing) charge neutralization of the magnetic ion beam (e.g., the ion beam at regions where the scanning magnetic field is non-zero) thereby reducing the current loss due to the zero field effect (ZFE). By reducing the current loss in regions having a magnetic field, the magnetic beam current is increased (e.g., the beam current is increased in regions where the magnetic field is non-zero) raising the overall beam current in a uniform manner over an entire scan path and thereby reducing the effect of the ZFE. In other words, the ZFE is removed by effectively minimizing it through an increase in the magnetized beam current.
Abstract:
An ion implantation system includes an ion source that generates ions and produces an ion beam along a beamline, a mass analyzer positioned downstream of the ion source that generates a magnetic field according to a selected charge-to-mass ratio. A beamline formed by ion beam is directed to a workpiece target. A gating apparatus includes one or more of: a mechanical gating device configured to block or deflect the ion beam from contacting a workpiece target; or a power control gating device configured to cut off power to the ion source. The beam-to-workpiece target translation mechanism changes the beam-to-workpiece target position while the ion beam is gated by the gating apparatus. Methods for implanting ions in predetermined profiles on a workpiece are disclosed with multiple scans. These systems and methods allow for implantation profiles with smooth curvature and/or sharp differences in dosage characteristics at adjacent positions.
Abstract:
An ion implantation has an ion source and a mass analyzer configured to form and mass analyze an ion beam. A bending element is positioned downstream of the mass analyzer, and respective first and second measurement apparatuses are positioned downstream and upstream of the bending element and configured to determine a respective first and second ion beam current of the ion beam. A workpiece scanning apparatus scans the workpiece through the ion beam. A controller is configured to determine an implant current of the ion beam at the workpiece and to control the workpiece scanning apparatus to control a scan velocity of the workpiece based on the implant current. The determination of the implant current of the ion beam is based, at least in part, on the first ion beam current and second ion beam current.