Abstract:
A computer-aided simulation method for an atomic-resolution scanning Seebeck microscope (SSM) image is provided. In the computer-aided simulation method, a computer may calculate a local thermoelectric voltage for a position of a voltage probe, to acquire an SSM image corresponding to the position, using the following equation: V ( r ) = V diff + S coh ( r ) ∫ ∇ T ( r ; r ′ ) · r ′ - r r ′ - r 3 3 r ′ in which V(r) denotes the local thermoelectric voltage, Vdiff denotes a thermoelectric voltage drop in a diffusive transport region in a tip and a sample, Scoh(r) denotes a position-dependent Seebeck coefficient, r denotes a distance measured from a point voltage probe, r′ denotes material internal coordinates, ∇T(r;r′) denotes a temperature gradient radially weighted by a factor of 1/r2, and ∫ ∇ T ( r ; r ′ ) · r ′ - r r ′ - r 3 3 r ′ denotes a volume integral of a temperature profile.
Abstract translation:提供了原子分辨率扫描塞贝克显微镜(SSM)图像的计算机辅助仿真方法。 在计算机辅助模拟方法中,计算机可以计算电压探针位置的局部热电压,以使用以下等式来获取对应于该位置的SSM图像:V(r)= V diff + S coh 其中V(r)表示局部热电电压,Vdiff表示热电电压(r),r(r),r' Scoh(r)表示与位置相关的塞贝克系数,r表示从点电压探头测得的距离,r'表示材料内部坐标,∇T(r; r' )表示以因子1 / r2径向加权的温度梯度,并且∫∇T(r; r')·r'-rr'-r叁3r'表示a 温度曲线。
Abstract:
Provided is a random access method of a node, the method including receiving spatial group information on spatial groups generated in a cell from a base station, identifying a spatial group corresponding to the node based on the spatial group information, transmitting a preamble signal to the base station by generating the preamble signal, and receiving a random access response message in response to the preamble signal.
Abstract:
The proposed invention is about an improved method for serial-in and serial-out transceiver applications. The proposed system includes a dual loop phase locked loop (PLL) architecture having a PLL and a phase rotator (PR)-based delay locked loop (DLL). An advantage of this architecture is that a single PLL offers decoupled bandwidths; a wide jitter-tolerance (JTOL) bandwidth for receiving data and a narrow jitter transfer (JTRAN) bandwidth for the data transmission. Thus, the amount of jitter at the output can be substantially reduced relative to the input while offering sufficient jitter tracking bandwidth. Also, this architecture is suitable for low-power applications since a phase shifter in the data path, which is one of the most power-hungry blocks in conventional DPLL designs, is not required.
Abstract:
Provided are a lead-free solder, a solder paste, and a semiconductor device, and more particularly, a lead-free solder that includes Cu in a range from about 0.1 wt % to about 0.8 wt %, Pd in a range from about 0.001 wt % to about 0.1 wt %, Al in a range from about 0.001 wt % to about 0.1 wt %, Si in a range from about 0.001 wt % to about 0.1 wt %, and Sn and inevitable impurities as remainder, a solder paste and a semiconductor device including the lead-free solder. The lead-free solder and the solder paste are environment-friendly and have a high high-temperature stability and high reliability.
Abstract:
An optical signal quality monitoring apparatus includes an optical detector for directly receiving an optical signal modulated in an optical path and converting the optical signal to an electric signal, an asynchronous sampling unit for asynchronously sampling the electric signal of the optical detector at a reduced speed, and a digital signal processor for monitoring an optical signal quality by finding a synchronized amplitude histogram of data sampled in the asynchronous sampling unit. An optical signal quality monitoring method includes (a) a step of allowing an optical detector to directly receive a modulated optical signal and to convert the optical signal to an electric signal; (b) a step of allowing an asynchronous sampling unit to asynchronously sample the electric signal; and (c) a step of allowing a digital signal processor to monitor an optical signal quality by generating a synchronized amplitude histogram of sampled data.
Abstract:
A beamforming method is provided. The beamforming method includes determining different beams for pieces of user equipment based on channel information fed back from the pieces of user equipment, predicting beam qualities of the pieces of user equipment for the beams, determining whether the beam qualities satisfy Quality of Service (QoS) for the pieces of user equipment, generating a wide nulling beam by applying wide nulling to a second beam having a side lobe acting as interference against one first beam, when the beam quality of the first beam does not satisfy the QoS; predicting beam qualities for the beams including the wide nulling beam instead of the second beam, and simultaneously communicating with the user equipment through the beams including the wide nulling beam instead of the second beam, when the beam qualities for the beams including the wide nulling beam instead of the second beam satisfy the QoS.
Abstract:
A steering apparatus of an in-wheel motor-driven electric vehicle capable of steering the vehicle by controlling torques applied to in-wheel motors mounted in road wheels. The steering apparatus of an in-wheel motor-driven vehicle includes a rigid tie rod having both ends rotatably connected to the in-wheel motors of the left and right wheels through hinge pins; a steering information detecting sensor for detecting a steering operation angle and torque according to user's steering operation; and a controller for calculating torque outputs to be applied to the in-wheel motor of the left wheel and the in-wheel motor of the right wheel based on information on the steering operation angle and torque detected by the steering information detecting sensor and vehicle speed information and controlling operation of the in-wheel motor of the left wheel and the in-wheel motor of the right wheel.
Abstract:
A power supply device may include a switching unit receiving and switching direct current power to provide power, a converting unit converting primary power into secondary power having a voltage level depending on a preset turns ratio according to the switching of the switching unit and outputting the converted secondary power, a light emitting diode which is driven by the secondary power provided from the converting unit, and a controlling unit generating a control signal of the switching unit based on voltage information of the secondary power and current information from the light emitting diode.
Abstract:
A system and method for providing a distributed virtual cloud by using a mobile grid are disclosed. The system for providing a distributed virtual cloud according to an exemplary embodiment of the present invention may include a social topology creating unit creating a social topology based upon social relationships between user equipments configuring a Social Network Service (SNS), a cluster configuration unit configuring a social topology cluster based upon closeness centrality between the user equipments configuring the Social Network Service (SNS), and a cloud interoperation unit performing interoperation between a virtual cloud corresponding to each social topology cluster and a cloud managing the social topology.
Abstract:
A data signal receiver includes a clock signal filter, a falling pulse signal generator, a mixing block, and a sampler. The clock signal filter generates a first filtered clock signal and a second filtered clock signal by filtering a clock signal. The falling pulse signal generator generates a falling pulse signal based on the first filtered clock signal. The mixing block generates a mixed data signal by mixing a data signal and the falling pulse signal. The sampler generates a recovered data signal by sampling the mixed data signal in response to the second filtered clock signal.