Abstract:
User equipment (UE) that includes a processor and that executes a random access procedure with a base station (E-UTRAN Node B (eNodeB), also known as Evolved Node B) is provided. The UE can at least temporarily be embodied by the processor. The UE may comprise: a determination unit for determining a message size that can be transmitted and that corresponds to a physical random access channel according to an assigned communication method with the base station; a calculation unit for configuring a message to correspond to the message size and for respectively calculating a preamble index and at least one message index from the message; and an encoder for providing respective encoding of the preamble index and the at least one message index, and transmitting the same to the base station.
Abstract:
The present specification suggests a method for establishing a terminal-centric group cell on the basis of measurement signal variation for cooperative transmission and handover in a mobile communication system. Specifically, a base station receives transmissions of parameters from a terminal, configures a terminal surrounding cell information table, and configures a cooperative cell cluster configuration table using the terminal surrounding cell information table as the terminal moves. The base station performs cooperative transmission and handover using the cooperative cell cluster configuration table. The terminal sends parameters to the base station periodically or when a certain condition is met, and the base station updates the terminal surrounding cell information table and the cooperative cell cluster configuration table using the parameters sent from the terminal to thereby use the same for mobility management.
Abstract:
Provided is a random access method of a node, the method including receiving spatial group information on spatial groups generated in a cell from a base station, identifying a spatial group corresponding to the node based on the spatial group information, transmitting a preamble signal to the base station by generating the preamble signal, and receiving a random access response message in response to the preamble signal.
Abstract:
The present specification suggests a method and an apparatus for more efficient mobility management through a hierarchical structure of a micro mobility management entity (MME) and a macro MME in a mobile communication system. Particularly, a second MME establishes a connection with a plurality of small cells included in a single macro cell. The second MME manages a single particular macro cell, and a first MME manages a plurality of macro cells, thereby providing a hierarchical structure. Additionally, the second MME transmits a paging message to a small cell in which a terminal is positioned, among the plurality of small cells included in a single macro cell. The second MME has information on the position of the terminal and can transmit the paging message to a particular small cell in which the terminal is positioned.
Abstract:
Provided is a random access method of a node, the method including receiving spatial group information on spatial groups generated in a cell from a base station, identifying a spatial group corresponding to the node based on the spatial group information, transmitting a preamble signal to the base station by generating the preamble signal, and receiving a random access response message in response to the preamble signal.
Abstract:
The present specification suggests a method for improving performance degradation caused by frequent handovers when a terminal moves among several cells, particularly among dense small cells. To this end, required are cooperative transmission among cells and a new handover method. A base station receives RSRP information about an anchor cell and a neighboring cell and configures a cooperation-based cell cluster using the RSRP information. If RSRP values are compared and meet specific conditions, the anchor cell and the neighboring cell carry out cooperative communication. If the RSRP values of the anchor cell and an anchor candidate cell are compared during the cooperative communication and meet specific conditions, handover from the anchor cell to the anchor candidate cell is carried out. If the present invention is applied, when the terminal moves in an environment where small cells are dense, the number of handovers is greatly reduced and thus network burden can be lessened.
Abstract:
A communication system and method for single-point transmission and reception and coordinated multi-point transmission and reception are provided. The system and method include determining information associated with a channel status of a target terminal. The system and method also include selecting, with respect to the target terminal, one of single-point transmission and reception and coordinated multi-point transmission and reception based on the information associated with the channel status of the target terminal.
Abstract:
Provided is a terminal, for example, user equipment (UE), including a processor and that performs a random access (RA) procedure with a base station, for example, for example, eNodeB, E-UTRAN Node B, or also known as Evolved Node B, and is at least temporarily embodied by the processor. The terminal may be at least temporarily embodied by the processor. The terminal may include a generator configured to generate a preamble sequence using a first sequence corresponding to a first root index based on a preamble index that is randomly selected, and a determiner configured to determine a second root index using the preamble index as an input value of a root index function. Further, the generator may be configured to generate a tag sequence using a second sequence corresponding to the second root index based on a tag index that is randomly selected.
Abstract:
Provided are a method by which a terminal selectively performs an operation on the basis of a terminal operation mode in a wireless communication system, and a device for supporting the method. The terminal determines a terminal group to which the terminal belongs, on the basis of a battery residual quantity and a battery residual quantity threshold value, calculates channel quality on the basis of a downlink reference signal, determines a terminal operation mode on the basis of the determined terminal group, the calculated channel quality, and the channel quality threshold value, and performs an operation on the basis of the determined terminal operation mode, wherein the terminal group can be any one of an energy insufficient group (EIG) and an energy sufficient group (ESG).
Abstract:
Provided is a method for selectively performing an uplink scheduling request (SR) by a terminal on the basis of an adaptive uplink channel state threshold value, and an apparatus supporting the same. The terminal may calculate an uplink channel state threshold value on the basis of a variation of a short-term average uplink channel state and a long-term average uplink channel state, determine an uplink channel state predictive value on the basis of a downlink channel state, and determine whether to perform an uplink scheduling request on the basis of the uplink channel state predictive value and the uplink channel state threshold value.