Abstract:
A multipurpose ion implanter beam line configuration comprising a mass analyzer magnet followed by a magnetic scanner and magnetic collimator combination that introduce bends to the beam path, the beam line constructed for enabling implantation of common monatomic dopant ion species cluster ions, the beam line configuration having a mass analyzer magnet defining a pole gap of substantial width between ferromagnetic poles of the magnet and a mass selection aperture, the analyzer magnet sized to accept an ion beam from a slot-form ion source extraction aperture of at least about 80 mm height and at least about 7 mm width, and to produce dispersion at the mass selection aperture in a plane corresponding to the width of the beam, the mass selection aperture capable of being set to a mass-selection width sized to select a beam of the cluster ions of the same dopant species but incrementally differing molecular weights, the mass selection aperture also capable of being set to a substantially narrower mass-selection width and the analyzer magnet having a resolution at the selection aperture sufficient to enable selection of a beam of monatomic dopant ions of substantially a single atomic or molecular weight, the magnetic scanner and magnetic collimator being constructed to successively bend the ion beam in the same sense, which is in the opposite sense to that of the bend introduced by the analyzer magnet of the beam line.
Abstract:
An apparatus and method for forming a carbon protective layer on a substrate using a plasma CVD method allows a more uniform in-plane distribution of the carbon protective layer thickness. The apparatus includes an annular anode that generates a plasma beam and a disk-shaped shield disposed between the anode and the substrate. The anode, the shield, and the substrate are concentrically arranged so that a straight line connecting the centers of the anode and the substrate is perpendicular to the deposition surface of the substrate where the carbon protective layer is to be formed. The center of the shield is also on the straight line.
Abstract:
An aperture that forms a charged particle beam includes a non-evaporable getter on a surface of the aperture. The non-evaporable getter is disposed in a position to which the charged particle beam is irradiated. The degradation of the exhaust performance around a charged particle source while the charged particle source is driven is suppressed.
Abstract:
An arrangement and a method for imaging, examining and processing a sample using electrons. The arrangement comprises an electron microscope for providing electrons, a chamber with a sample holder on which a sample is positionable such that it can be imaged, examined and processed using the electrons. A system for magnetic field compensation in at least one spatial direction, including a compensation coil, wherein a wall of the chamber has an accommodation area, in sections thereof, for a portion of the compensation coil. Generally, only the chamber in which the sample is arranged is considered as a compensation volume. It suffice to reduce the compensation volume to the sensitive region of the electron microscope, since it is in the chamber, shortly following a final focusing and filtering, where the electron beam is most sensitive in terms of image quality when subjected to external electromagnetic interference.
Abstract:
The invention relates to a charged particle system such as a multi beam lithography system, comprising a manipulator device for manipulation of one or more charged particle beams, wherein the manipulator device comprises at least one through opening in the plane of the planar substrate for passing at least one charged particle beam there through. Each through opening is provided with electrodes arranged in a first set of multiple first electrodes along a first part of a perimeter of said through opening and in a second set of multiple second electrodes along a second part of said perimeter. An electronic control circuit is arranged for providing voltage differences the electrodes in dependence of a position of the first and second electrode along the perimeter of the through opening.
Abstract:
The present invention provides a substrate processing apparatus capable of suppressing mutual contamination and/or damage of the insides of ion beam generators arranged opposite each other via a substrate, and a magnetic recording medium manufacturing method. A substrate processing apparatus according to an embodiment of the present invention includes a first ion beam generator that applies an ion beam to one surface to be processed of a substrate W, and a second ion beam generator that applies an ion beam to another surface to be processed, which are arranged opposite each other via the substrate W, and an area of a first grid in the first ion beam generator, and an area of a second grid in the second ion beam generator, each area corresponding to an opening of the substrate W, are occluded.
Abstract:
An electron detecting mechanism having a plate provided with an opening permitting passage of the primary beam, an energy filter, a first light detector, and a second light detector. The plate has first and second scintillating surface on its opposite sides. The first scintillating surface faces a sample. The second scintillating surface faces the energy filter. When the primary beam hits the sample, electrons are produced and some of them impinge as first electrons on the first scintillating surface. Consequently, first scintillation light is produced and detected by the first light detector. At the same time, some of the electrons produced from the sample pass through the opening of the plate, are repelled by the energy filter, and impinge as second electrons on the second scintillating surface. As a result, second scintillation light is produced and detected by the second light detector.
Abstract:
Provided is a charged particle radiation device enabling suppression of both inclination and vertical vibration of a charged particle optical lens barrel, with a simple configuration. A charged particle radiation device according to the present invention includes a vibration damping member (19) including viscoelastic material sheets (16A and 16B) sandwiched by support plates (17A and 17B), and is configured so that a plane including a sheet surface of each viscoelastic material sheet is not perpendicular to a center axis of the charged particle optical lens barrel.
Abstract:
A charged particle lithography system for transferring a pattern onto the surface of a target, such as a wafer, comprising a charged particle source adapted for generating a diverging charged particle beam, a converging means for refracting said diverging charged particle beam, the converging means comprising a first electrode, and an aperture array element comprising a plurality of apertures, the aperture array element forming a second electrode, wherein the system is adapted for creating an electric field between the first electrode and the second electrode.
Abstract:
The disclosure relates to a method for producing a multi-beam deflector array device with a plurality of openings for use in a particle-beam exposure apparatus, in particular a projection lithography system, said method starting from a CMOS wafer and comprising the steps of generating at least one pair of parallel trenches on the first side of the wafer blank at the edges of an area where the circuitry layer below is non-functional, the trenches reaching into the layer of bulk material; passivating the sidewalls and bottom of the trenches; depositing a conducting filling material into the trenches, thus creating columns of filling material serving as electrodes; attaching metallic contact means to the top of the electrodes; structuring of an opening between the electrodes, said opening stretching across abovementioned area so that the columns are arranged opposite of each other on the sidewalls of the opening.