Abstract:
A method for testing a monolithic stacked integrated circuit (IC) is provided. The method includes receiving a layer of the IC. The layer has a first surface and a second surface, and the layer includes a substrate. The method further includes attaching probe pads to the first surface, and applying a first fault testing to the IC through the probe pads. The method further includes forming another layer of the IC over the second surface, and applying a second fault testing to the IC through the probe pads.
Abstract:
A monolithic stacked integrated circuit (IC) is provided with a known-good-layer (KGL) test circuit and a scan segment in one of its layers. The test circuit includes a plurality of inputs, outputs, and multiplexers coupled to the scan segment and to a second layer of the IC. The test circuit further includes a plurality of control elements such that scan testing of the IC may be conducted on a layer-by-layer basis.
Abstract:
A monolithic stacked integrated circuit (IC) is provided with a known-good-layer (KGL) path delay test circuit and at least a portion of a critical path in one of its layers. The test circuit includes a plurality of inputs, outputs, a flip-flop coupled to the at least a portion of the critical path and a multiplexer coupled to the flip-flop and to a second layer of the IC. The test circuit further includes a control element such that path delay testing of the IC may be conducted on a layer-by-layer basis.
Abstract:
An embodiment is method comprising attaching a first die and a second die to a first surface of a first interposer using respective ones of first conductive connectors coupled to respective first surfaces of the first die and the second die; attaching a third die and a fourth die to a second surface of the first interposer using respective ones of second conductive connectors, the second surface of the first interposer being opposite the first surface of the interposer; and attaching the first die and the second die to a substrate using respective ones of third conductive connectors coupled to respective second surfaces of the first die and the second die.
Abstract:
Systems, methods, and devices are described herein for performing intra-die and inter-die tests of one or more dies of an integrated circuit. A cell of an integrated circuit includes a data register, an I/O pad, and a first multiplexer. The data register is configured to output a signal. The I/O pad is coupled to the data register and configured to receive and buffer the signal. The first multiplexer is coupled to the I/O pad and the data register. The multiplexer is configured to selectively output either the buffered signal or the signal based on whether a scan mode or a functional mode is enabled.
Abstract:
A method of identifying cell-internal defects: obtaining a circuit design of an integrated circuit, the circuit design including netlists of one or more cells coupled to one another; identifying the netlist corresponding to one of the one or more cells; injecting a defect to one of a plurality of circuit elements and one or more interconnects of the cell; retrieving a first current waveform at a location of the cell where the defect is injected by applying excitations to inputs of the cell; retrieving, without the defect injected, a second current waveform at the location of the cell by applying the same excitations to the inputs of the cell; and selectively annotating, based on the first current waveform and the second current waveform, an input/output table of the cell with the defect.
Abstract:
A method performed at least partially by a processor includes performing a test sequence. In the test sequence, a test pattern is loaded into a circuit. The test pattern is configured to cause the circuit to output a predetermined test response. A test response is unloaded from the circuit after a test wait time period has passed since the loading of the test pattern into the circuit. The unloaded test response is compared with the predetermined test response.
Abstract:
A method of detecting one or more faults in a semiconductor device that includes generating one or more secondary node lists from a primary node list. The primary node list includes one or more nodes. Each node of the one or more nodes of the primary node list is associated with a corresponding secondary node list of the one or more secondary node lists. The method also includes generating a test pattern set from the secondary node list and a fault list. The fault list identifies one or more faults.
Abstract:
In some embodiments, in a method performed by at least one processor for estimating an overall power state coverage of an electronic system level (ESL) model comprising a plurality of blocks for a module, a first value and a second value are set for each block of said plurality of blocks. At least one verification case is selected for each block in the ESL model. For each verification case of said at least one verification case: (a) a target coverage value is set, (b) a register transfer level (RTL) simulation is performed, (c) an actual coverage value is received, and (d) the first value or the second value is updated based on whether the actual coverage value is less than the target coverage value or not. A power state coverage is calculated for said each block. The overall power state coverage is calculated for the ESL model comprising said plurality of blocks for said module.
Abstract:
Provided is a method of assigning a first set of probe pads to an interposer for maximizing a defect coverage for the interposer. The interposer includes a second set of nets and the defect coverage is based on a ratio between a tested net length and an overall net length. The method includes processing the second set such that every net interconnecting more than two micro-bumps is divided into a plurality of nets and every two of the more than two micro-bumps are interconnected by one of the plurality of nets. The method further includes calculating an untested length of each net in the second set; selecting a first net from the second set with the maximum untested length; selecting two probe pads from the first set based on a user-defined cost function; and connecting the two probe pads to the first net with two dummy nets.