摘要:
A semiconductor structure is provided that includes a lower interconnect level including a first dielectric material having at least one conductive feature embedded therein; a dielectric capping layer located on the first dielectric material and some, but not all, portions of the at least one conductive feature; and an upper interconnect level including a second dielectric material having at least one conductively filled via and an overlying conductively filled line disposed therein, wherein the conductively filled via is in contact with an exposed surface of the at least one conductive feature of the first interconnect level by an anchoring area. Moreover, the conductively filled via and conductively filled line of the inventive structure are separated from the second dielectric material by a single continuous diffusion barrier layer. As such, the second dielectric material includes no damaged regions in areas adjacent to the conductively filled line. A method of forming such an interconnect structure is also provided.
摘要:
In one embodiment an anti-fuse structure is provided that includes a first dielectric material having at least a first anti-fuse region and a second anti-fuse region, wherein at least one of the anti-fuse regions includes a conductive region embedded within the first dielectric material. The anti-fuse structure further includes a first diamond like carbon layer having a first conductivity located on at least the first dielectric material in the first anti-fuse region and a second diamond like carbon layer having a second conductivity located on at least the first dielectric material in the second anti-fuse region. In this embodiment, the second conductivity is different from the first conductivity and the first diamond like carbon layer and the second diamond like carbon layer have the same thickness. The anti-fuse structure also includes a second dielectric material located atop the first and second diamond like carbon layers. The second dielectric material includes at least one conductively filled region embedded therein.
摘要:
A structure. The structure includes: a substrate; a first electrode in the substrate; a dielectric layer on top of the substrate and the electrode; a second dielectric layer on the first dielectric layer, said second dielectric layer comprising a second dielectric material; a fuse element buried in the first dielectric layer, wherein the fuse element (i) physically separates, (ii) is in direct physical contact with both, and (iii) is sandwiched between a first region and a second region of the dielectric layer; and a second electrode on top of the fuse element, wherein the first electrode and the second electrode are electrically coupled to each other through the fuse element.
摘要:
A structure and methods of fabricating the structure. The structure comprising: a trench in a dielectric layer; an electrically conductive liner, an electrically conductive core conductor and an electrically conductive fill material filling voids between said liner and said core conductor.
摘要:
A method of forming a stochastically based integrated circuit encryption structure includes forming a lower conductive layer over a substrate, forming a short prevention layer over the lower conductive layer, forming an intermediate layer over the short prevention layer, wherein the intermediate layer is characterized by randomly structured nanopore features. An upper conductive layer is formed over the random nanopore structured intermediate layer. The upper conductive layer is patterned into an array of individual cells, wherein a measurable electrical parameter of the individual cells has a random distribution from cell to cell with respect to a reference value of the electrical parameter.
摘要:
An interconnect structure and methods for forming semiconductor interconnect structures are disclosed. In one embodiment, the interconnect structure includes: a substrate including a first liner layer and a first metal layer thereover; a dielectric barrier layer over the first metal layer and the substrate; an inter-level dielectric layer over the dielectric barrier layer; a via extending between the inter-level dielectric layer, the dielectric barrier layer, and the first metal layer, the via including a second liner layer and a second metal layer thereover; and a diffusion barrier layer located between the second liner layer and the first metal layer, wherein a portion of the diffusion barrier layer is located under the dielectric barrier layer.
摘要:
The present invention provides structures and methods for providing facets with different crystallographic orientations than what a semiconductor substrate normally provides. By masking a portion of a semiconductor surface and exposing the rest to an anisotripic etch process that preferentially etches a set of crystallographic planes faster than others, new facets with different surface orientations than the substrate orientation are formed on the semiconductor substrate. Alternatively, selective epitaxy may be utilized to generate new facets. The facets thus formed are joined to form a lambda shaped profile in a cross-section. The electrical properties of the new facets, specifically, the enhanced carrier mobility, are utilized to enhance the performance of transistors. In a transistor with a channel on the facets that are joined to form a lambda shaped profile, the current flows in the direction of the ridge joining the facets avoiding any inflection in the direction of the current.
摘要:
A reliable and mechanical strong interconnect structure is provided that does not include gouging features in the bottom of the an opening, particularly at a via bottom. Instead, the interconnect structures of the present invention utilize a Co-containing buffer layer that is selectively deposited on exposed surfaces of the conductive features that are located in a lower interconnect level. The selective deposition is performed through at least one opening that is present in a dielectric material of an upper interconnect level. The selective deposition is performed by electroplating or electroless plating. The Co-containing buffer layer comprises Co and at least one of P and B. W may optionally be also present in the Co-containing buffer layer.
摘要:
An improved semiconductor structure consists of interconnects in an upper interconnect level connected to interconnects in a lower interconnect level through use of a conductive protrusion located at the bottom of a via opening in an upper interconnect level, the conductive protrusion extends upward from bottom of the via opening and into the via opening. The improved interconnect structure with the conductive protrusion between the upper and lower interconnects enhances overall interconnect reliability.
摘要:
Semiconductor wiring structures including a dielectric layer having a metal wiring line therein, a via extending downwardly from the metal wiring line, a metal cap layer over the metal wiring line, and a local dielectric cap positioned within a portion of the metal cap layer and in contact with the metal wiring line and a related method are disclosed. The local dielectric cap represents an intentionally created weak point in the metal wiring line of a dual-damascene interconnect, which induces electromigration (EM) voiding in the line, rather than at the bottom of a via extending downwardly from the metal wiring line. Since the critical void size in line fails, especially with metal cap layer (liner) redundancy, is much larger than that in via fails, the EM lifetime can be significantly increased.