Abstract:
The present disclosure discloses an array substrate, comprising a substrate, a plurality of pixel regions on the substrate, and a thin-film transistor formed in each of the pixel regions, each of the pixel regions comprising a pixel electrode region, wherein, the thin-film transistor comprises a gate layer and a source/drain layer formed laminatedly on the substrate; the array substrate further comprises a flat layer and a reflective metal layer formed in sequence on the substrate and covering at least the pixel electrode region and the thin-film transistor; the reflective metal layer is electrically connected to a drain of the thin-film transistor; and at least one of the gate layer and the source/drain layer is formed of a single metal layer. The present disclosure further provides a method for manufacturing the array substrate and a totally reflective type liquid crystal display comprising the array substrate.
Abstract:
The invention belongs to the field of display technology, and particularly provides an array substrate and a method for manufacturing the same, and a display device. The array substrate includes a base substrate, and a thin film transistor and driving electrodes provided on the base substrate, the thin film transistor includes a gate, a gate insulating layer, an active layer, a source and a drain, the driving electrodes include a slit-shaped electrode and a plate-shaped electrode which are located in different layers and at least partially overlap with each other in the orthographic projection direction, the source, the drain and the active layer are formed so that part of their bottom surfaces are located in the same plane, and a resin layer is further provided between the thin film transistor and the plate-shaped electrode.
Abstract:
A displaying base plate and a manufacturing method thereof, and a displaying device. The displaying base plate includes a substrate, and a first electrode layer disposed on one side of the substrate, wherein the first electrode layer includes a first electrode pattern; a first planarization layer disposed on one side of the first electrode layer that is away from the substrate, wherein the first planarization layer is provided with a through hole, and the through hole penetrates the first planarization layer, to expose the first electrode pattern; and a second electrode layer, a second planarization layer and a third electrode layer that are disposed in stack on one side of the first planarization layer that is away from the substrate, wherein the second electrode layer is disposed closer to the substrate, the second electrode layer is connected to the first electrode pattern and the third electrode layer.
Abstract:
The present disclosure provides a thin film transistor, a GOA circuit and an array substrate, the thin film transistor including a source electrode, including a source electrode wiring and a plurality of source electrode branches; a drain electrode, including a drain electrode wiring and a plurality of drain electrode branches; a gate; a semiconductor layer including a plurality of semiconductor branches; a plurality of source electrode branches. The plurality of drain electrode branches are in contact with the plurality of semiconductor branches and are divided into a plurality of cells; the source electrode wiring and the drain electrode wiring are arranged in a parallel and spaced apart, and the number m of one of the source electrode wiring and the drain electrode wiring is an integer greater than or equal to 2, and the number n of the other is an integer greater than or equal to 1.
Abstract:
Provided is a shift register unit. The shift register unit includes an input circuit, a compensation control circuit, and an output circuit; wherein input circuit coupled to an input signal terminal, an input control terminal, a first power supply terminal, a reference node, and a first node; the compensation control circuit coupled to a first clock signal terminal, the reference node, and the first node; and the output circuit coupled to the first node, a second clock signal terminal, and an output terminal.
Abstract:
An array substrate includes a substrate, the array substrate includes a display region and a detection region. And the detection region includes a thin film transistor located on the substrate and a photodiode located on one side of the thin film transistor away from the substrate, and the array substrate further includes a first inorganic protective layer, an organic protective layer and a second inorganic protective layer located between the thin film transistor and the photodiode. And the first inorganic protective layer, the organic protective layer and the second inorganic protective layer are stacked in sequence in a direction away from the substrate, and an orthographic projection of the photodiode on the substrate is within the range of the orthographic projection of the organic protective layer on the substrate.
Abstract:
At least one embodiment of the present disclosure provides a display panel, and the display panel includes: a first substrate and a second substrate oppositely combined with each other, the first substrate includes a base substrate, and a gate line, a first electrode, a first interlayer insulating layer, and second electrode on the base substrate; the first interlayer insulating layer includes a first via hole penetrating through the first interlayer insulating layer, the second electrode is electrically connected to the first electrode the first via hole, first support structure is provided in a region corresponding to the first via hole and on a side of the second electrode away from the base substrate; at least a part of the first support structure is located in the first via hole, an orthographic projection of the first via hole overlaps with an orthographic projection of the gate line on the base substrate.
Abstract:
A display substrate, a manufacturing method thereof and a display apparatus are provided. In the present disclosure, a first transistor group with oxide semiconductor as an active layer material is disposed on a side of a second transistor group with polysilicon as an active layer material away from the base, and an area enclosed by orthographic projections of the transistors in the first transistor group on the base is overlapped with an area enclosed by orthographic projections of the transistors in the second transistor group on the base. Stable performance of the transistors included can be ensured in a manufacturing process of the first transistor group and the second transistor group located in different layers, and at the same time, an area occupied by the driving circuit can be reduced so as to decrease a frame width of a display apparatus or improve resolution of the display apparatus.
Abstract:
A display base plate, a preparation method therefor and a display panel are provided in the present disclosure. The display panel can greatly improve resolution while ensuring low power consumption. The display base plate includes a plurality of sub-pixels. Each of the plurality of sub-pixels includes a storage capacitor, a polysilicon transistor and at least one oxide transistor. The storage capacitor includes a first electrode and a second electrode oppositely arranged, and first electrode is arranged at a side of the second electrode away from the substrate. The second electrode is arranged in the same layer as a gate electrode of the polysilicon transistor. The at least one oxide transistor is arranged on a side of the first electrode away from the substrate, and the first electrode at least partially overlaps with an active layer of the at least one oxide transistor in a direction perpendicular to the substrate.
Abstract:
A biosensor apparatus is provided. The biosensor apparatus includes a base substrate; a first fluid channel layer on the base substrate and having a first fluid channel passing therethrough; a foundation layer on a side of the first fluid channel layer away from the base substrate, a foundation layer throughhole extending through the foundation layer to connect to the first fluid channel; and a micropore layer on a side of the foundation layer away from the base substrate, a micropore extending through the micropore layer to connect to the first fluid channel through the foundation layer throughhole. The micropore layer extends into the foundation layer throughhole and at least partially covers an inner wall of the foundation layer throughhole.