Abstract:
The present application provides an array substrate, a manufacturing method for the same, and a display panel. The array substrate includes a display area and a non-display area connected to the display area, and the display area includes a plurality of sub-pixels arranged in an array. The non-display area includes at least one polysilicon transistor, each of the sub-pixels includes an oxide transistor and a pixel electrode. A gate of the oxide transistor as well as a first electrode and a second electrode of the polysilicon transistor are arranged in a same layer; an active layer of the oxide transistor and the pixel electrode are arranged in a same layer, and are in contact with each other. The active layer of the oxide transistor includes an oxide semiconductor material, and the pixel electrode includes an oxide conductor material.
Abstract:
The present disclosure provides a method of fabricating a graphene touch sensor, a graphene sensor and a touch-sensitive display device. The method comprises: forming a graphene layer on a substrate; forming a metal layer on the graphene layer; coating a photoresist layer on the metal layer; exposing the photoresist layer by using a gray-scale reticle and developing the exposed photoresist layer to obtain a photoresist completely removed region, a photoresist partially remained region, and a photoresist completely remained region; removing the metal layer located in the photoresist completely removed region; removing the graphene layer located in the photoresist completely removed region; removing the metal layer located in the photoresist partially remained region; coating a protective film on the graphene layer located in the photoresist partially remained region; striping off the remainder photoresist. The embodiment of the present disclosure avoids the alkaline developing solution and the alkaline stripping solution from contacting the graphene film to degrade the conduction of the graphene, thereby increasing yield and reducing cost.
Abstract:
Provided is a substrate. The substrate includes a base substrate; and a plurality of sub-pixel structures arranged in an array on the base substrate, wherein the sub-pixel structure comprises: a thin film transistor disposed on the base substrate, the thin film transistor comprising a source and a drain; an insulating layer disposed on a side of the thin film transistor distal from the base substrate, a first via hole being formed in the insulating layer; a pixel electrode disposed on a side of the insulating layer distal from the base substrate, the pixel electrode being electrically connected to either the source or the drain through the first via hole; and a filling block disposed at the first via hole.
Abstract:
Provided is a display panel. The display panel includes an array substrate, a color filter substrate, and a backlight module, wherein the array substrate includes a substrate and a photoelectric sensing device, the substrate is provided with a fingerprint recognition region, and an orthographic projection of the photoelectric sensing device on the substrate is within the fingerprint recognition region. The color filter substrate is disposed opposite to the array substrate, the backlight module is disposed on a side, distal from the array substrate, of the film substrate, and light emitted from the backlight module is capable of passing through the fingerprint recognition region.
Abstract:
A method for manufacturing an array substrate, an array substrate, and a fingerprint recognition device. The method includes: forming a plurality of polysilicon patterns on a substrate, the plurality of polysilicon patterns including a first polysilicon pattern for forming the PIN-type diode and a second polysilicon pattern for forming the transistor, each polysilicon pattern including a first sub-region, a second sub-region, and a third sub-region between the first sub-region and the second sub-region; using a first doping process to dope the first sub-region of the first polysilicon pattern and the first sub-region and the second sub-region of the second polysilicon pattern with one of P-type ions and N-type ions respectively; and using a second doping process to dope the second sub-region of the first polysilicon pattern with the other of P-type ions and N-type ions.
Abstract:
A display substrate, a manufacturing method thereof and a display apparatus are provided. In the present disclosure, a first transistor group with oxide semiconductor as an active layer material is disposed on a side of a second transistor group with polysilicon as an active layer material away from the base, and an area enclosed by orthographic projections of the transistors in the first transistor group on the base is overlapped with an area enclosed by orthographic projections of the transistors in the second transistor group on the base. Stable performance of the transistors included can be ensured in a manufacturing process of the first transistor group and the second transistor group located in different layers, and at the same time, an area occupied by the driving circuit can be reduced so as to decrease a frame width of a display apparatus or improve resolution of the display apparatus.
Abstract:
A display panel and a display device are provided. The display panel has a touch side and includes an array substrate and an opposite substrate arranged opposite to each other. The array substrate includes an image sensor array including a plurality of image sensors each including a photosensitive element configured to receive light reflected by a texture touched on the touch side for texture acquisition; the opposite substrate includes a light shielding layer including a plurality of first openings arranged in an array, and the plurality of first openings are in one-to-one correspondence with and partially overlap with the photosensitive elements of the plurality of image sensors in a direction perpendicular to a panel surface of the display panel.
Abstract:
A displaying base plate and a manufacturing method thereof, and a displaying device. The displaying base plate includes an active area and a non-active area located at the periphery of the active area, wherein the active area includes an opening area and a non-opening area. The displaying base plate includes a substrate and a thin-film transistor disposed on one side of the substrate, wherein the thin-film transistor includes a grid electrode, an active layer, a source-drain electrode and an auxiliary film layer, an excavation area is disposed on the auxiliary film layer, and an orthographic projection of the excavation area on the substrate at least partially covers the opening area.
Abstract:
The present disclosure provides a graphene conductive film, a method for forming the same and a flexible touch device. The method for forming a graphene conductive film includes: growing a graphene layer on a metal catalytic substrate; coating a PAA solution onto the graphene layer, and curing the PAA solution so as to form a PI film; and removing the metal catalytic substrate so as to form the graphene conductive film with the PI film.
Abstract:
Disclosed are a thin film transistor and a manufacturing method therefor, a displaying base plate and a displaying apparatus. The thin film transistor includes an active layer, a first insulating layer and a gate layer which are disposed in stack, wherein the active layer includes a source contact area, a drain contact area, and a channel area connecting the source contact area and the drain contact area; the channel area includes a first channel area, a first resistance area and a second channel area sequentially disposed in a first direction; the gate layer includes a first gate and a second gate which are separately disposed; an orthographic projection of the first gate on a plane where the active layer is located covers the first channel area; and an orthographic projection of the second gate on a plane where the active layer is located covers the second channel area.