Abstract:
A method of processing a substrate includes: depositing an etch stop layer atop a first dielectric layer; forming a feature in the etch stop layer and the first dielectric layer; depositing a first metal layer to fill the feature; etching the first metal layer to form a recess; depositing a second dielectric layer to fill the recess wherein the second dielectric layer is a low-k material suitable as a metal and oxygen diffusion barrier; forming a patterned mask layer atop the substrate to expose a portion of the second dielectric layer and the etch stop layer; etching the exposed portion of the second dielectric layer to a top surface of the first metal layer to form a via in the second dielectric layer; and depositing a second metal layer atop the substrate, wherein the second metal layer is connected to the first metal layer by the via.
Abstract:
Implementations described herein relate to methods for forming gap fill materials. After the gap fill material is deposited and before a CMP process is performed on the gap fill material, one or more ion implantation processes are utilized to treat the deposited gap fill material. The one or more ion implantation processes include implanting a first ion species in the gap fill material using a first ion energy, and then implanting a second ion species in the gap fill material using a second ion energy that's lower than the first ion energy. The one or more ion implantation processes minimize CMP dishing and improve recess profile.
Abstract:
The present invention provides an apparatus having a plasma profile control plate disposed in a plasma processing chamber so as to locally alter plasma density to provide uniform plasma distribution across a substrate surface during processing. In one embodiment, a process kit includes a plate configured to be disposed in a plasma processing chamber, a plurality of apertures formed therethrough, the apertures configured to permit processing gases to flow through the plate, and an array of unit cells including at least one aperture formed in the plate, wherein each unit cell has an electrode assembly individually controllable relative to electrode assemblies disposed in at least two other unit cells.
Abstract:
Embodiments of the disclosure provide apparatus and methods for modifying a surface of a substrate using a plasma modification process. In one embodiment, a process generally includes the removal and/or redistribution of a portion of an exposed surface of the substrate by use of an energetic particle beam while the substrate is disposed within a particle beam modification apparatus. Embodiments may also provide a plasma modification process that includes one or more pre-planarization processing steps and/or one or more post-planarization processing steps that are all performed within one processing system. Some embodiments may provide an apparatus and methods for planarizing a surface of a substrate by performing all of the plasma modification processes within either the same processing chamber, the same processing system or within processing chambers found in two or more processing systems.
Abstract:
Methods for eliminating early exposure of a conductive layer in a dual damascene structure and for etching a dielectric barrier layer in the dual damascene structure are provided. In one embodiment, a method for etching a dielectric barrier layer disposed on a substrate includes patterning a substrate having a dielectric bulk insulating layer disposed on a dielectric barrier layer using a hardmask layer disposed on the dielectric bulk insulating layer as an etching mask, exposing a portion of the dielectric barrier layer after removing the dielectric bulk insulating layer uncovered by the dielectric bulk insulating layer, removing the hardmask layer from the substrate, and subsequently etching the dielectric barrier layer exposed by the dielectric bulk insulating layer.
Abstract:
Methods for etching a dielectric barrier layer disposed on the substrate using a low temperature etching process along with a subsequent interface protection layer deposition process are provided. In one embodiment, a method for etching a dielectric barrier layer disposed on a substrate includes transferring a substrate having a dielectric barrier layer disposed thereon into an etching processing chamber, performing a treatment process on the dielectric barrier layer, remotely generating a plasma in an etching gas mixture supplied into the etching processing chamber to etch the treated dielectric barrier layer disposed on the substrate, plasma annealing the dielectric barrier layer to remove the dielectric barrier layer from the substrate, and forming an interface protection layer after the dielectric barrier is removed from the substrate.
Abstract:
Methods for using an electron beam treatment performed on an amorphous carbon layer to form a treated amorphous carbon layer with high etching resistance are provided. In one embodiment, a method of treating an amorphous carbon film includes providing a substrate having a material layer disposed, forming an amorphous carbon layer on the material layer, and performing an electron beam treatment process on the amorphous carbon layer.
Abstract:
A method for enhancing a photoresist profile control includes applying a photoresist layer comprising a photoacid generator on an underlayer disposed on a material layer, exposing a first portion of the photoresist layer unprotected by a photomask to light radiation in a lithographic exposure process, providing a thermal energy to the photoresist layer in a post-exposure baking process, applying an electric field or a magnetic field while performing the post-exposure baking process, and drifting photoacid from the photoresist layer to a predetermined portion of the underlayer under the first portion of the photoresist layer.
Abstract:
Embodiments described and discussed herein provide methods for selectively depositing a metal oxides on a substrate. In one or more embodiments, methods for forming a metal oxide material includes positioning a substrate within a processing chamber, where the substrate has passivated and non-passivated surfaces, exposing the substrate to a first metal alkoxide precursor to selectively deposit a first metal oxide layer on or over the non-passivated surface, and exposing the substrate to a second metal alkoxide precursor to selectively deposit a second metal oxide layer on the first metal oxide layer. The method also includes sequentially repeating exposing the substrate to the first and second metal alkoxide precursors to produce a laminate film containing alternating layers of the first and second metal oxide layers. Each of the first and second metal alkoxide precursors contains a different metal selected from titanium, zirconium, hafnium, aluminum, or lanthanum.
Abstract:
Methods and apparatus for forming an integrated circuit structure, comprising: delivering a process gas to a process volume of a process chamber; applying low frequency RF power to an electrode formed from a high secondary electron emission coefficient material disposed in the process volume; generating a plasma comprising ions in the process volume; bombarding the electrode with the ions to cause the electrode to emit electrons and form an electron beam; and contacting a dielectric material with the electron beam to cure the dielectric material, wherein the dielectric material is a flowable chemical vapor deposition product. In embodiments, the curing stabilizes the dielectric material by reducing the oxygen content and increasing the nitrogen content of the dielectric material.