Abstract:
A workpiece or semiconductor wafer is tilted as a ribbon beam is swept up and/or down the workpiece. In so doing, the implant angle or the angle of the ion beam relative to the workpiece remains substantially constant across the wafer. This allows devices to be formed substantially consistently on the wafer. Resolving plates move with the beam as the beam is scanned up and/or down. This allows desired ions to impinge on the wafer, but blocks undesirable contaminants.
Abstract:
Techniques for reducing contamination during ion implantation is disclosed. In one particular exemplary embodiment, the techniques may be realized by an apparatus for reducing contamination during ion implantation. The apparatus may comprise a platen to hold a workpiece for ion implantation by an ion beam. The apparatus may also comprise a mask, located in front of the platen, to block the ion beam and at least a portion of contamination ions from reaching a first portion of the workpiece during ion implantation of a second portion of the workpiece. The apparatus may further comprise a control mechanism, coupled to the platen, to reposition the workpiece to expose the first portion of the workpiece for ion implantation.
Abstract:
An ion implanter includes an ion source for generating an ion beam moving along a beam line and a vacuum or implantation chamber wherein a workpiece, such as a silicon wafer is positioned to intersect the ion beam for ion implantation of a surface of the workpiece by the ion beam. A liner has an interior facing surface that bounds at least a portion of the evacuated interior region and that comprises grooves spaced across the surface of the liner to capture contaminants generated within the interior region during operation of the ion implanter.
Abstract:
An ion implantation is disclosed that includes an ionization chamber having a restricted outlet aperture and configured so that the gas or vapor in the ionization chamber is at a pressure substantially higher than the pressure within an extraction region into which the ions are to be extracted external to the ionization chamber. The vapor is ionized by direct electron impact ionization by an electron source that is in a region adjacent the outlet aperture of the ionization chamber to produce ions from the molecules of the gas or vapor to a density of at least 1010 cm−3 at the aperture while maintaining conditions that limit the transverse kinetic energy of the ions to less than about 0.7 eV. The beam is transported to a target surface and the ions of the transported ion beam are implanted into the target.
Abstract translation:公开了一种离子注入,其包括具有限制的出口孔的电离室,并且被构造成使得离子化室中的气体或蒸汽的压力显着高于离子被提取外部的提取区域内的压力 电离室。 蒸汽通过电子源直接电离而电离,该电子源位于邻近离子化室的出口孔的区域中,以产生从气体或蒸汽的分子到至少10×10 6的密度的离子, SUP> cm -3,同时保持将离子的横向动能限制在小于约0.7eV的条件。 将光束输送到目标表面,并将输送的离子束的离子注入靶中。
Abstract:
Techniques for preventing parasitic beamlets from affecting ion implantation are disclosed. In one particular exemplary embodiment, the techniques may be realized as an apparatus for preventing parasitic beamlets from affecting ion implantation. The apparatus may comprise a controller that is configured to scan a spot beam back and forth, thereby forming an ion beam spanning a predetermined width. The apparatus may also comprise an aperture mechanism that, if kept stationary, allows the spot beam to pass through. The apparatus may further comprise a synchronization mechanism, coupled to the controller and the aperture mechanism, that is configured to cause the aperture mechanism to move in synchronization with the scanned spot beam, allowing the scanned spot beam to pass through but blocking one or more parasitic beamlets associated with the spot beam.
Abstract:
An ion implantation device for vaporizing decaborane and other heat-sensitive materials via a novel vaporizer and vapor delivery system and delivering a controlled, low-pressure drop flow of vapors, e.g. decaborane, into the ion source. The ion implantation device includes an ion source which can operate without an arc plasma, which can improve the emittance properties and the purity of the beam and without a strong applied magnetic field, which can improve the emittance properties of the beam. The ion source is configured so that it can be retrofit into the ion source design space of an existing Bernas source-based ion implanters and the like or otherwise enabling compatibility with other ion source designs.
Abstract:
The present invention comprehends a compact and economical apparatus for producing high intensities of a wide variety of wanted positive and negative molecular and atomic ion beams that have been previously impossible to previously produce at useful intensities. In addition, the invention provides a substantial rejection of companion background ions that are frequently simultaneously emitted with the wanted ions. The principle underlying the present invention is resonance ionization-transfer where energy differences between resonant and non-resonant processes are exploited to enhance or attenuate particular charge-changing processes. This new source technique is relevant to the fields of Accelerator Mass Spectroscopy; Molecular Ion Implantation; Generation of Directed Neutral Beams; and Production of Electrons required for Ion Beam Neutralization within magnetic fields. An example having commercial importance is ionization of the decaborane molecule, B10H14 where an almost perfect ionization resonance match occurs between decaborane molecules and arsenic atoms.
Abstract translation:本发明包括一种紧凑且经济的装置,用于产生以前不可能以有用强度预先产生的各种各样的所需正,负分子和原子离子束的强度。 此外,本发明提供了与所需离子频繁同时发射的伴随背景离子的显着排除。 本发明的基本原理是谐振电离转移,其中利用共振和非共振过程之间的能量差异来增强或减弱特定的电荷变化过程。 这种新的源技术与加速器质谱技术相关; 分子离子注入 定向中性梁的生成 和磁场中离子束中和所需的电子的生产。 具有商业重要性的实例是十硼烷分子的电离,其中在十硼烷分子和砷原子之间发生几乎完美的电离谐振匹配的B 10 H 14 N 14。
Abstract:
An ion implantation device for vaporizing decaborane and other heat-sensitive materials via a novel vaporizer and vapor delivery system and delivering a controlled, low-pressure drop flow of vapors, e.g. decaborane, into the ion source. The ion implantation device includes an ion source which can operate without an arc plasma, which can improve the emittance properties and the purity of the beam and without a strong applied magnetic field, which can improve the emittance properties of the beam. The ion source is configured so that it can be retrofit into the ion source design space of an existing Bernas source-based ion implanters and the like or otherwise enabling compatibility with other ion source designs.
Abstract:
An object of the present invention is to provide an ion implantation method for shortening a down time of an ion implantation apparatus after exposure of a chamber and for improving throughput and a method for manufacturing a semiconductor device. Specifically, the object of the invention is to provide an ion implantation method that can improve throughput during an ion implantation step of B and a method for manufacturing a semiconductor device. The ion implantation method comprises the steps of: introducing an impurity imparting p-type conductivity and H2O in an ion source; ionizing the impurity imparting p-type conductivity; and implanting into a semiconductor film.
Abstract:
A method of controlling the implant dosage is provided. First, the residual gases within an ion implant station are analyzed and the partial pressure of each residual gas is measured. Thereafter, the current Im of the ion beam is measured and the real dosage Ir of the ion beam implanted into a wafer is calculated. Since all the residual gases in the ion implant station are considered, the implanting dosage can be accurately controlled.