Abstract:
A method for producing a depressed-cladding core rod of an ultra-low water peak optical fiber, the method including 1) producing a core rod component; 2) producing an inner cladding casing component; 3) disposing the core rod hollow shaft and the casing hollow shaft respectively in the glass lathe; 4) cutting off connections among a pressure controlling pipe, a scrubber, and a vacuum pump; 5) connecting the inner cladding casing to the core rod hollow shaft hermetically; 6) turning on the glass lathe; 7) transporting a first mixture gas to the core rod hollow shaft; 8) moving a high temperature heat source; 9) transporting a second mixture gas to the core rod hollow shaft; 10) transporting the first mixture gas to the core rod hollow shaft; 11) transporting the first mixture gas under certain conditions; and 12) controlling relevant parameters to fuse the inner cladding casing with the core layer rod.
Abstract:
The invention relates to methods for fabricating antireflective surface structures (ARSS) on an optical element using a seed layer of material deposited on the surface of the optical element. The seed layer is removed during or after the etching, and serves to control etching time as well as the transmission region of the optical element having ARSS. Optical elements having ARSS on at least one surface are also provided.
Abstract:
A high efficiency optical combiner minimizes core region distortions in the area where fusion splicing between an input tapered fiber bundle (or any other type of “cladding-less” input fiber) and output fiber are joined. The thickness of the output fiber's glass cladding layer in the splice region is reduced (if not removed altogether) so that a core-to-core splice is formed and any necked-down region where the glass flows to join the core regions (while also joining the outer diameters) is essentially eliminated. The reduction of distortions in the core region of the splice improves the transmission efficiency between an input tapered fiber bundle and output fiber, reaching a level of about 99%. This high efficiency optical combiner is particularly well-suited for applications where a number of pump sources are combined and applied as an input to a fiber laser or amplifier.
Abstract:
A method for producing a depressed-cladding core rod of an ultra-low water peak optical fiber, the method including 1) producing a core rod component; 2) producing an inner cladding casing component; 3) disposing the core rod hollow shaft and the casing hollow shaft respectively in the glass lathe; 4) cutting off connections among a pressure controlling pipe, a scrubber, and a vacuum pump; 5) connecting the inner cladding casing to the core rod hollow shaft hermetically; 6) turning on the glass lathe; 7) transporting a first mixture gas to the core rod hollow shaft; 8) moving a high temperature heat source; 9) transporting a second mixture gas to the core rod hollow shaft; 10) transporting the first mixture gas to the core rod hollow shaft; 11) transporting the first mixture gas under certain conditions; and 12) controlling relevant parameters to fuse the inner cladding casing with the core layer rod.
Abstract:
The invention describes a method for the removal of glass where the parameters of the removal process are set over the length of the substrate (preform) so that a uniform removal can be achieved over the complete substrate length.
Abstract:
A surface chemical treatment apparatus provided with: a first conduit having an opening at one end and communicating with a liquid supply means at the other end; a second conduit having at one end an opening that surrounds the opening of the first conduit and communicating with a liquid suction means at the other end; and a moving mechanism for moving the openings of the first and second conduits relative to the solid phase surface, so as to make a surface chemical treatment possible in a fine pattern by allowing the patterning solution to be dispensed through the opening of the first conduit while allowing the solution to be suctioned up together with the surrounding liquid phase or gas phase medium through the opening of the second conduit that surrounds the opening of the first conduit and, thus, preventing seepage of the solution in all directions.
Abstract:
A method of etching silicon oxide from a trench is described which allows more homogeneous etch rates up and down the sides of the trench. One disclosed method includes a sequential introduction of (1) a hydrogen-containing precursor and then (2) a fluorine-containing precursor into a substrate processing region. The temperature of the substrate is low during each of the two steps in order to allow the reaction to proceed and form solid residue by-product. A second disclosed method reverses the order of steps (1) and (2) but still forms solid residue by-product. The solid residue by-product is removed by raising the temperature in a subsequent sublimation step regardless of the order of the two steps.
Abstract:
An optical fiber preform producing method is a method for producing an optical fiber preform including a core part and a cladding part and being composed of silica-based glass, which has: an alkali metal adding step of adding an alkali metal in a maximum concentration of not less than 500 ppm in the vicinity of an inner surface of a glass pipe composed of silica glass; an etching step of etching the inner surface of the glass pipe by vapor phase etching under flow of SF6 gas and chlorine gas through an inner hollow of the glass pipe, after the alkali metal adding step; and a collapsing step of eliminating the hollow of the glass pipe to produce a glass rod, after the etching step, wherein the optical fiber preform is produced using the glass rod produced by the collapsing step.
Abstract:
The presence of a detectable entity within a detection volume of a microfabricated elastomeric structure is sensed through a change in the electrical or magnetic environment of the detection volume. In embodiments utilizing electronic detection, an electric field is applied to the detection volume and a change in impedance, current, or combined impedance and current due to the presence of the detectable entity is measured. In embodiments utilizing magnetic detection, the magnetic properties of a magnetized detected entity alter the magnetic field of the detection volume. This changed magnetic field induces a current which can reveal the detectable entity. The change in resistance of a magnetoresistive element may also reveal the passage of a magnetized detectable entity.
Abstract:
According to embodiments of the present invention, an optical device is provided. The optical device includes an optical fiber comprising a core for propagation of light and a cladding surrounding the core, and at least one microchannel defined in the optical fiber extending at least partially through the cladding, wherein the at least one microchannel has a concave-shaped surface arranged to interact with an optical field of the light. According to further embodiments of the present invention, a method of forming an optical device and a method for determining a parameter of a fluid are also provided.