Abstract:
The invention provides a gold-supporting catalyst comprising gold nanoparticles and a carrier consisting of porous ceramic obtained by firing a mixture comprising an aluminum compound, a lime component, and a plastic clay containing 1% by mass or less of feldspars and quartz, wherein the gold nanoparticles are supported in an amount of 0.01 to 10 parts by mass on the carrier based on 100 parts by mass of the carrier.
Abstract:
There is provided a catalyst that exhibits a high denitration efficiency at a relatively low temperature and does not cause oxidation of SO2 in a selective catalytic reduction reaction that uses ammonia as a reducing agent. A denitration catalyst is obtained by coating a substrate with a catalyst component. The catalyst component contains 43 wt % or more of vanadium pentoxide and has a BET specific surface area of 30 m2/g or more. The denitration catalyst is used for denitration at 200° C. or lower.
Abstract:
(Problem to be Solved)The present application is to provide: a positive electrode material for producing a lithium-sulfur solid-state battery that does not experience degradation of battery performance from charging/discharging cycling, does not present the fire risk of liquid electrolytes, and thereby makes battery performance compatible with safety; an all-solid-state lithium-sulfur battery that uses the positive electrode material; and a production method.(Means for Solution)The present application relate to a lithium-sulfur solid-state battery positive electrode material that contains: sulfur; a conductive material; a binder; and an ionic liquid or a solvate ionic liquid, and an all-solid-state lithium-sulfur battery that includes: a positive electrode that comprises the positive electrode material; a negative electrode; and an oxide solid electrolyte. The positive electrode material is manufactured by means of a method wherein a slurry obtained by adding an organic solvent to the sulfur, the conductive material, the binder, and the ionic liquid or solvate ionic liquid is applied to one surface of an oxide solid electrolyte formation body and dried to remove the organic solvent.
Abstract:
A combustion system operated at low cost is provided. A combustion system 1 includes a combustion device 10 that burns fuel, an exhaust line L1 through which exhaust gas flows, the exhaust gas being generated through combustion of the fuel in the combustion device 10, a dust collector 50 that is disposed in the exhaust line L1 and that collects dust in the exhaust gas, and a denitration device 90 that is disposed in the exhaust line L1 and that removes nitrogen oxide from the exhaust gas using a denitration catalyst. The denitration device 90 is disposed downstream from the dust collector 50 in the exhaust line L1. The denitration catalyst contains 43 wt % or more of vanadium pentoxide and has a BET specific surface area of 30 m2/g or more.
Abstract:
A lithium secondary battery having a positive electrode, a negative electrode, a separator and an electrolyte solution, in which the positive electrode contains a first active material and a second active material each capable of intercalating and deintercalating lithium. The first active material is in the state under which only deintercalation of lithium can be carried out in a battery reaction with the negative electrode immediately after assembly of the lithium secondary battery, and the second active material is in the state under which lithium can be intercalated in the battery reaction with the negative electrode immediately after assembly of the lithium secondary battery. The negative electrode contains metal lithium as an active material. The separator has a structure in which pores are three-dimensionally regularly arranged.
Abstract:
A method for precisely predicting phase equilibrium from existing phase equilibrium data on the basis of a wide range of phase equilibrium data including binary vapor-liquid equilibrium data; a method or apparatus for designing or controlling a component separator or a refiner using the prediction method; and a program for designing this design or control apparatus. Binary phase equilibrium measurement data is used to calculate an index of proximity ratio to critical points and infinite dilution pressure gradients. The obtained index is correlated with the infinite dilution pressure gradients to newly calculate infinite dilution activity coefficients from the respective index to infinite dilution pressure gradients correlations. The obtained infinite dilution activity coefficients values are used to predict phase equilibrium. Thus, the obtained values are used to design or control a component separator or a refiner, such as a distillation column.
Abstract:
An object is to provide a method for manufacturing a wavelength selective heat radiation material in which a surface roughness of an upper portion of a cavity wall defining each microcavity is suppressed or in which microcavities each having an aspect ratio larger than 3.0 are formed. For the wavelength selective heat radiation material, a base material having a mask having predetermined openings tightly adhered to a surface thereof, or a base material in which depressions are previously formed on one surface thereof by pressing a die having projections arrayed so as to correspond to positions of microcavities thereagainst, is subjected to anisotropic etching, thereby providing a wavelength selective heat radiation material in which the surface roughness of the upper portion of the cavity wall defining each of the microcavities is suppressed or a wavelength selective heat radiation material having microcavities whose each aspect ratio is larger than 3.0.
Abstract:
There is provided an image processing apparatus which includes a division unit dividing an image into a plurality of images in a bit depth direction, and an encoding unit encoding respectively some or all of the plurality of images acquired by dividing the image in the bit depth direction by the division unit.
Abstract:
An information record/reproduction apparatus includes logical volumes that can be used as a variable-length record/reproduction area and a physical volume that has been divided into a plurality of fixed-length areas and is not subjected to record or reproduction. Allocation to the logical volume is made by combining the divided fixed-length physical volumes by a management unit, and the size of the information storage area can be set depending upon, for example, a category of information to be recorded. If the amount of information of high priority exceeds a size of a predetermined logical volume corresponding to the information while no unused physical volume is available, then the management unit detaches part of a logical volume in which information of low priority has been recorded, allocates the detached part to the logical volume corresponding to the information, and thus records the exceeding amount of information.
Abstract:
A surface chemical treatment apparatus provided with: a first conduit having an opening at one end and communicating with a liquid supply means at the other end; a second conduit having at one end an opening that surrounds the opening of the first conduit and communicating with a liquid suction means at the other end; and a moving mechanism for moving the openings of the first and second conduits relative to the solid phase surface, so as to make a surface chemical treatment possible in a fine pattern by allowing the patterning solution to be dispensed through the opening of the first conduit while allowing the solution to be suctioned up together with the surrounding liquid phase or gas phase medium through the opening of the second conduit that surrounds the opening of the first conduit and, thus, preventing seepage of the solution in all directions.