Abstract:
Aspects for adjusting resistive memory write driver strength based on write error rate (WER) are disclosed. In one aspect, a write driver strength control circuit is provided to adjust a write current provided to a resistive memory based on a WER of the resistive memory. The write driver strength control circuit includes a tracking circuit configured to determine the WER of the resistive memory based on write operations performed on resistive memory elements. The write driver strength control circuit includes a write current calculator circuit configured to compare the WER to a target WER that represents the desired yield performance level of the resistive memory. A write current adjust circuit in the write driver strength control circuit is configured to adjust the write current based on this comparison. The write driver strength control circuit adjusts the write current to perform write operations while reducing write errors associated with breakdown voltage.
Abstract:
A magnetic tunnel junction (MTJ) device includes a free layer. The MTJ also includes a barrier layer coupled to the free layer. The MTJ also has a fixed layer, coupled to the barrier layer. The fixed layer includes a first synthetic antiferromagnetic (SAF) multilayer having a first perpendicular magnetic anisotropy (PMA) and a first damping constant. The fixed layer also includes a second SAF multilayer having a second perpendicular magnetic anisotropy (PMA) and a second damping constant lower than the first damping constant. The first SAF multilayer is closer to the barrier layer than the second SAF multilayer. The fixed layer also includes a SAF coupling layer between the first and the second SAF multilayers.
Abstract:
One feature pertains to a method of implementing a physically unclonable function. The method includes initializing an array of magnetoresistive random-access memory (MRAM) cells to a first logical state, where each of the MRAM cells have a random transition voltage that is greater than a first voltage and less than a second voltage. The transition voltage represents a voltage level that causes the MRAM cells to transition from the first logical state to a second logical state. The method further includes applying a programming signal voltage to each of the MRAM cells of the array to cause at least a portion of the MRAM cells of the array to randomly change state from the first logical state to the second logical state, where the programming signal voltage is greater than the first voltage and less than the second voltage.
Abstract:
A one time programming (OTP) apparatus unit cell includes magnetic tunnel junctions (MTJs) with reversed connections for placing the MTJ in an anti-parallel resistance state during programming. Increased MTJ resistance in its anti-parallel resistance state causes a higher programming voltage which reduces programming time and programming current.
Abstract:
An improved magnetic tunnel junction device and methods for fabricating the improved magnetic tunnel junction device are provided. The provided two-etch process reduces etching damage and ablated material redeposition. In an example, provided is a method for fabricating a magnetic tunnel junction (MTJ). The method includes forming a buffer layer on a substrate, forming a bottom electrode on the substrate, forming a pin layer on the bottom electrode, forming a barrier layer on the pin layer, and forming a free layer on the barrier layer. A first etching includes etching the free layer, without etching the barrier layer, the pin layer, and the bottom electrode. The method also includes forming a top electrode on the free layer, as well as forming a hardmask layer on the top electrode. A second etching includes etching the hardmask layer; the top electrode layer, the barrier layer, the pin layer, and the bottom electrode.
Abstract:
An apparatus includes a perpendicular magnetic anisotropy magnetic tunnel junction (pMTJ) device. The pMTJ device includes a storage layer and a reference layer. The reference layer includes a portion configured to produce a ferrimagnetic effect. The portion includes a first layer, a second layer, and a third layer. The second layer is configured to antiferromagnetically (AF) couple the first layer and the third layer during operation of the pMTJ device.
Abstract:
One feature pertains to a method of implementing a physically unclonable function that includes providing an array of metal-insulator-metal (MIM) devices, where the MIM devices are configured to represent a first resistance state or a second resistance state and a plurality of the MIM devices are initially at the first resistance state. The MIM devices have a random breakdown voltage that is greater than a first voltage and less than a second voltage, where the breakdown voltage represents a voltage that causes the MIM devices to transition from the first resistance state to the second resistance state. The method further includes applying a signal line voltage to the MIM devices to cause a portion of the MIM devices to randomly breakdown and transition from the first resistance state to the second resistance state, the signal line voltage greater than the first voltage and less than the second voltage.
Abstract:
An apparatus includes a memory cell including a magnetic tunnel junction (MTJ) structure coupled between a bit line and a source line. The MTJ structure includes a free layer coupled to the bit line and a pinned layer. A magnetic moment of the free layer is substantially parallel to a magnetic moment of the pinned layer in a first state and substantially antiparallel to the magnetic moment of the pinned layer in a second state. A physical dimension of the pinned layer produces an unbalanced offset magnetic field which corresponds to a first switching current of the MTJ structure that enables switching from the first state to the second state when a first voltage is applied to the bit line and corresponds to a second switching current that enables switching from the second state to the first state when the first voltage is applied to the source line.
Abstract:
An inductor tunable by a variable magnetic flux density component is disclosed. A particular device includes an inductor. The device further includes a variable magnetic flux density component (VMFDC) positioned to influence a magnetic field of the inductor when a current is applied to the inductor.
Abstract:
A resistance-based memory includes a two-diode access device. In a particular embodiment, a method includes biasing a bit line with a first voltage. The method further includes biasing the sense line with a second voltage. Biasing the bit line and biasing the sense line generates a current through a resistance-based memory element and through one of a first diode and a second diode. A cathode of the first diode is coupled to the bit line and an anode of the second diode is coupled to the sense line.