Abstract:
A method of manufacturing a stacked-type semiconductor device, comprises: arranging a plurality of stacked chips obtained by stacking semiconductor chips on a plurality of stages on a support substrate; connecting a semiconductor chip of each stage in each stacked chip and the support substrate by wire while performing heating in units of stacked chips; performing plastic molding of each stacked chip; and separating the stacked chips from each other; an apparatus for manufacturing a stacked-type semiconductor device, comprising divided heater blocks formed under a support substrate on which a plurality of stacked chips obtained by stacking a plurality of semiconductor chips are arranged, the divided heater blocks being formed with respect to the stacked chips, and a heating device to selectively transmit heat to a stacked chip subjected to a wire bonding.
Abstract:
This invention serves to suppress the deterioration of oil tightness of a valve after welding without any change in the direction of fuel injection even with deformation of a convex portion after welding of an injection opening plate to a valve seat, as well as without any variation in the direction of fuel injection due to welding variation. In this invention, in a fuel injection valve which has a valve body for opening and closing a valve seat, and receives an operation signal from a control unit to operate the valve body so that fuel is injected from a plurality of injection holes formed in an injection hole plate welded through a welded portion to a downstream side of the valve seat while passing through a gap between the valve body and the valve seat, said injection hole plate is formed at its central portion with a convex portion which is substantially axisymmetric with respect to a valve seat axis and which has a circular-arc shaped cross section, and said welded portion is also substantially axisymmetric with respect to said valve seat axis. In addition, inlet portions of said injection holes are disposed in an injection hole arrangement surface diametrically outside of said convex portion and diametrically inside of a valve seat opening inner wall which is a minimum inside diameter of said valve seat, and said injection hole arrangement surface is coplanar with a surface having said welded portion.
Abstract:
A first semiconductor element is bonded on a substrate. A complex film formed of integrated dicing film and adhesive film is affixed on a rear surface of a semiconductor wafer which is to be second semiconductor elements, the dicing film having a thickness within a range of not less than 50 μm nor more than 140 μm and a room temperature elastic modulus within a range of not less than 30 MPa nor more than 120 MPa, and the adhesive film having a thickness of 30 μm or more and a room temperature elastic modulus before curing within a range of not less than 500 MPa nor more than 1200 MPa. The semiconductor wafer together with the adhesive film is divided into the second semiconductor elements. The second semiconductor element is picked up from the dicing film to be bonded on the first semiconductor element.
Abstract:
An adhesive layer of which thickness is over 25 μm and a dicing tape are laminated on a rear surface of a semiconductor wafer. The semiconductor wafer is cut together with a part of the adhesive layer by using a first blade of which cutting depth reaches the adhesive layer. The adhesive layer is cut together with a part of the dicing tape by using a second blade of which cutting depth reaches the dicing tape and of which width is narrower than the first blade. A semiconductor element sectioned by cutting the semiconductor wafer with the adhesive layer is picked up from the dicing tape, and is adhered on another semiconductor element or a circuit board.
Abstract:
A substrate having an element mounting portion is placed on a suction stage having a suction hole. The suction hole is provided so as to suck a region excluding the element mounting portion of the substrate. Otherwise, the suction hole has a hole size of not less than 0.5 mm nor more than 1.0 mm. A fist semiconduct or substrate is sucked with a suction rubber collet with Shore A hardness of not less than 50 nor more than 70. The first semiconductor element is bonded to the element mounting portion of the substrate. A second semiconductor element having an adhesive layer with a remaining volatile content of 0.5% or less is disposed on the first semiconductor substrate. The adhesive layer is heated to a temperature in a range of not less than 120° C. nor more than 150° C. and bonded.
Abstract:
There is disclosed a semiconductor device comprising at least two substrates, at least one wiring being provided in each of the substrates, the substrates being stacked such that major surfaces on one side of each thereof oppose each other and the wirings being connected between the major surfaces, and a plurality of connecting portions being provided adjacent to each other while connected to each wiring on the major surfaces opposing each other, at least one of the connecting portions provided on the same major surface being formed smaller than the adjacent other connecting portion, the connecting portions being provided at positions opposing each other one to one on the major surface, the connecting portions being connected so that the wirings are connected between the major surfaces, one connecting portion of a pair of the connecting portions connected one to one being formed smaller than the other connecting portion.
Abstract:
In a semiconductor device manufacturing method, a semiconductor element is mounted on a substrate including first connection electrodes, first interconnections electrically connected to the first connection electrodes and a first alignment mark with the semiconductor element electrically connected to the first interconnections. Then, the substrate having the semiconductor element mounted thereon and a core substrate including second connection electrodes and second interconnections electrically connected to the second connection electrode and having adhesive layers formed on both surfaces thereof are positioned with respect to and stacked on each other based on recognition of the first alignment mark, thermo-compression bonding is performed at temperatures at which an adhesive agent of the adhesive layers is melted, without being cured, to temporarily fix the substrate having the semiconductor element mounted thereon on the core substrate by tackiness of the adhesive agent.
Abstract:
A method of dwarfing plants comprises controlling the expression of the genes involved in the dwarfism of the plants is provided. A molecule to be utilized for dwarfing plants is also provided. A single gene that causes the d1 mutation, which results in the dwarf abnormality of rice, was identified and isolated from a vast chromosomal region by the map-based cloning technique. This method enables, for example, creating ornamental plants and agricultural products with new commercial values, and therefore is useful especially in the areas of agriculture and horticulture.
Abstract:
An outer lead bending apparatus comprises a fixed unit, a movable unit movable toward and away from the fixed unit, a first die detachably mounted on one of the fixed unit and movable unit and holding a semiconductor package devise in place, and a second die detachably mounted on the other unit and, when the movable unit is driven toward the fixed unit, bending, together with the first die, the outer leads of the semiconductor package devise into a given configuration.
Abstract:
After formation of an opening by exposing and development of the photosensitive surface protection film and adhesive layer which is formed on the circuit side of the semiconductor wafer, the semiconductor chips having a photosensitive surface protection film and adhesive layer thereon is fabricated by cutting individual chips from the semiconductor wafer. After the second semiconductor chip is placed over the first semiconductor chip up by the suction collet, the second semiconductor chip is bonded with the first semiconductor chip by the first surface protection film and adhesive layer. The suction side of the suction collet has lower adhesion to the second semiconductor chip than that between the now bonded semiconductor chips.