Abstract:
A highly thermal conductive substrate formed by bonding a device layer formed on a silicon on insulator (SOI) wafer and a buried oxide film to an insulator substrate having a thermal conductivity of 40 W/m·K or more via a low-stress adhesive, wherein a thickness of the buried oxide film is 50 to 500 nm and a thickness of the adhesive is 0.1 to 10 μm.
Abstract:
A laminate having a semiconductor substrate, a support substrate, and an adhesive layer and a release layer disposed between the semiconductor substrate and the support substrate, wherein the release layer is a film formed from a releasing agent composition containing an organic resin, a branched-chain polysilane, and a solvent.
Abstract:
The present invention provides a semiconductor chip delamination device for peeling off a protective film attached to one surface of a semiconductor chip, including: a stage unit (400) configured to allow a ring frame, in which the semiconductor chip having the protective film attached thereto is disposed, to be seated thereon; a delamination feeding unit (300) configured to feed a delamination seal contactable with the protective film so as to peel off the protective film from the semiconductor chip; a covering unit (500, 600) configured to allow the delamination seal to cover the semiconductor chip such that the delamination seal comes into close contact with the protective film; and a delaminating unit (700) configured to peel off, from the semiconductor chip, the delamination seal disposed to cover the semiconductor chip having the protective film disposed on one surface thereof, and provides a method of controlling the semiconductor chip delamination device.
Abstract:
Described methods and apparatus provide a controlled perturbation to an adhesive bond between a device wafer and a carrier wafer. The controlled perturbation, which can be mechanical, chemical, thermal, or radiative, facilitates the separation of the two wafers without damaging the device wafer. The controlled perturbation initiates a crack either within the adhesive joining the two wafers, at an interface within the adhesive layer (such as between a release layer and the adhesive), or at a wafer/adhesive interface. The crack can then be propagated using any of the foregoing methods, or combinations thereof, used to initiate the crack.
Abstract:
Embodiments of the invention generally relate to apparatuses and methods for producing epitaxial thin films and devices by epitaxial lift off (ELO) processes. In one embodiment, a method for forming thin film devices during an ELO process is provided which includes coupling a plurality of substrates to an elongated support tape, wherein each substrate contains an epitaxial film disposed over a sacrificial layer disposed over a wafer, exposing the substrates to an etchant during an etching process while moving the elongated support tape, and etching the sacrificial layers and peeling the epitaxial films from the wafers while moving the elongated support tape. Embodiments also include several apparatuses, continuous-type as well as a batch-type apparatuses, for forming the epitaxial thin films and devices, including an apparatus for removing the support tape and epitaxial films from the wafers on which the epitaxial films were grown.
Abstract:
Apparatus and methods for mechanically cleaving a bonded wafer structure are disclosed. The apparatus and methods involve clamps that grip the bonded wafer structure and are actuated to cause the bonded structure to cleave.
Abstract:
Device for stripping a product substrate from a carrier substrate connected to the product substrate by an interconnect layer by means of a flexible film that is mounted on a film frame and that comprises an adhesive layer for holding the product substrate in a bonding surface section of the film, the film being mounted on the film frame in an attachment section of the film that surrounds the bonding surface section, and the film comprising a stripping section that is located between the bonding surface section and the attachment section, the device having stripping means for effecting a stripping of the product substrate from the carrier substrate from a periphery of the product substrate.
Abstract:
An adhesive sheet comprising a release substrate 10, a substrate film 14, and a first tacky-adhesive layer 12 placed between the release substrate 10 and the substrate film 14, wherein an annular incision D is formed on the release substrate 10 from the surface of the first tacky-adhesive layer 12 side, the first tacky-adhesive layer 12 is laminated so as to cover the whole inner surface of the incision D in the release substrate 10, and the incision D has a depth d of less than the thickness of the release substrate 10 and 25 μm or less.
Abstract:
A liquid adhesive is applied to a circuit surface of a semiconductor wafer. A carrier is joined to a surface of the semiconductor wafer coated with the adhesive. A rear face of the semiconductor wafer is ground while the carrier is held. The semiconductor wafer is supported on a ring frame via a support adhesive tape. The carrier is removed from the semiconductor wafer. The adhesive tape is separated integrally with the film-like adhesive from the semiconductor wafer through joining a separation tape having a width larger than a diameter of the semiconductor wafer to the adhesive on the semiconductor wafer and then separating the separation tape.
Abstract:
An adhesive sheet comprising a release substrate 10, a substrate film 14, and a first tacky-adhesive layer 12 placed between the release substrate 10 and the substrate film 14, wherein an annular incision D is formed on the release substrate 10 from the surface of the first tacky-adhesive layer 12 side, the first tacky-adhesive layer 12 is laminated so as to cover the whole inner surface of the incision D in the release substrate 10, and the incision D has a depth d of less than the thickness of the release substrate 10 and 25 μm or less.