Abstract:
An active remote sensing system is provided with an array of laser diodes that generate light directed to an object having one or more optical wavelengths that include at least one near-infrared wavelength between 700 nanometers and 2500 nanometers. One of the laser diodes pulses with pulse duration of approximately 0.5 to 2 nanoseconds at repetition rate between one kilohertz and about 100 megahertz. A beam splitter receives the laser light, separates the light into a plurality of spatially separated lights and directs the lights to the object. A detection system includes a photodiode array synchronized to the array of laser diodes and performs a time-of-flight measurement by measuring a temporal distribution of photons received from the object. The time-of-flight measurement is combined with images from a camera system, and the remote sensing system is configured to be coupled to a wearable device, a smart phone or a tablet.
Abstract:
A wearable device includes a measurement device adapted to be placed on a wrist or ear having a light source with LEDs to measure physiological parameters. The measurement device generates an optical beam having a near infrared wavelength between 700-2500 nanometers by modulating the LEDs, and lenses to deliver the beam to tissue, which reflects the beam to a receiver having spectral filters in front of spatially separated detectors coupled to analog to digital converters that generate at least two receiver outputs. Signal-to-noise ratio of the beam reflected from the tissue is improved by comparing the receiver outputs, and by increasing light intensity from the LEDs. The receiver is synchronized to the modulation of the LEDs and uses a lock-in technique that detects the modulation frequency. The measurement device generates an output signal representing a non-invasive measurement on blood within the tissue.
Abstract:
Novel monolithic cyclical reflective spatial heterodyne spectrometers (CRSHS) are presented. Monolithic CRSHS in accordance with the invention have a single frame wherein a flat mirror, roof mirror, and symmetric grating are affixed. The invention contains only fixed parts; the flat mirror, roof mirror, and symmetric grating do not move in relation to the frame. Compared to conventional CRSHS known in the art, the present invention enables much smaller and lighter CRSHS, requires less time and skill for maintenance, and is a better economic option. The disclosed invention may include fixed field-widening optical elements or a fiber-fed assembly.
Abstract:
The invention is directed at a miniature grism system. The miniature grism system is a single compact device that comprises a grism with collimating and focusing optics. In an aspect, the grism includes at least one prism and a grating. In an aspect, the miniature grism system, and more specifically the grism, includes at least one prism which is placed on either side of the grating. The focusing optics and the collimating optics are found on opposite sides of the grism system, sandwiching the prism and grating of the grism. In an aspect, the miniature grism system is configured to be retained within a filter wheel. The miniature grism system is configured to be used with telescopes having a small focal ratio.
Abstract:
A spectrograph that includes camera focusing optics with a primary mirror having a concave-shaped reflective mirror surface, a secondary mirror having a convex-shaped reflective mirror surface and positioned to receive light reflected by the primary mirror, a tertiary mirror having a concave reflective mirror surface and positioned to receive light reflected by the secondary mirror, and a field correcting lens comprising a convex lens surface in combination with a concave lens surface, wherein light received by said field correcting lens from said tertiary mirror enters said convex lens surface, traverses said field correcting lens, and exits from said concave lens surface. The optional field correcting lens is positioned such that the primary mirror, secondary mirror, tertiary mirror, and the field correcting lens share the common parent vertex axis.
Abstract:
A spectrograph that includes a first mirror having flat a mirror reflective surface and positioned to reflect light traversing a prism, a second mirror having a concave-shaped reflective mirror surface and positioned to reflect light received from the first mirror, a third mirror having a convex-shaped reflective mirror surface and positioned to receive light reflected by the second mirror, a fourth mirror having a spheroidal reflective mirror surface and positioned to receive light reflected by the third mirror, and a field lens comprising a concave mirror surface in combination with a convex mirror surface, wherein light received by said field lens from said fourth mirror enters said convex mirror surface, traverses said field lens, and exits from said concave mirror surface. The fifth mirror is positioned such that the second mirror, third mirror, fourth mirror, and fifth mirror share a common vertex axis.
Abstract:
A system and method for using near-infrared or short-wave infrared (SWIR) sources such as lamps, thermal sources, LED's, laser diodes, super-luminescent laser diodes, and super-continuum light sources for early detection of dental caries measure transmission and/or reflectance. In the SWIR wavelength range, solid, intact teeth may have a low reflectance or high transmission with very few spectral features while a carious region exhibits more scattering, so the reflectance increases in amplitude. The spectral dependence of the transmitted or reflected light from the tooth may be used to detect and quantify the degree of caries. Instruments for applying SWIR light to one or more teeth may include a C-clamp design, a mouth guard design, or hand-held devices that may augment other dental tools. The measurement device may communicate with a smart phone or tablet, which may transmit a related signal to the cloud, where additional value-added services are performed.
Abstract:
A system and method for using near-infrared or short-wave infrared (SWIR) light sources between approximately 1.4-1.8 microns, 2-2.5 microns, 1.4-2.4 microns, 1-1.8 microns for active remote sensing or hyper-spectral imaging for detection of natural gas leaks or exploration sense the presence of hydro-carbon gases such as methane and ethane. Most hydro-carbons (gases, liquids and solids) exhibit spectral features in the SWIR, which may also coincide with atmospheric transmission windows (e.g., approximately 1.4-1.8 microns or 2-2.5 microns). Active remote sensing or hyper-spectral imaging systems may include a fiber-based super-continuum laser and a detection system and may reside on an aircraft, vehicle, handheld, or stationary platform. Super-continuum sources may emit light in the near-infrared or SWIR. An imaging spectrometer or a gas-filter correlation radiometer may be used to identify substances or materials such as oil spills, geology and mineralogy, vegetation, greenhouse gases, construction materials, plastics, explosives, fertilizers, paints, or drugs.
Abstract:
A spectrometer (100) for analyzing the spectrum of an upstream light beam (1) includes an entrance slit (101) and angular dispersing elements (130). The angular dispersing elements include at least one polarization-dependent diffraction grating that is suitable for, at the plurality of wavelengths (1, 2, 3), diffracting a corrected light beam (20) into diffracted light beams (31, 32, 33) in a given particular diffraction order of the polarization-dependent diffraction grating, which is either the +1 diffraction order or the −1 diffraction order, when the corrected light beam has a preset corrected polarization state that is circular; and the spectrometer includes elements for modifying polarization (1100) placed between the entrance slit and the angular dispersion elements, which are suitable for modifying the polarization state of the upstream light beam in order to generate the corrected light beam with a preset corrected polarization state.