Abstract:
Reactive gas is released through a crystal source material or melt to react with impurities and carry the impurities away as gaseous products or as precipitates or in light or heavy form. The gaseous products are removed by vacuum and the heavy products fall to the bottom of the melt. Light products rise to the top of the melt. After purifying, dopants are added to the melt. The melt moves away from the heater and the crystal is formed. Subsequent heating zones re-melt and refine the crystal, and a dopant is added in a final heating zone. The crystal is divided, and divided portions of the crystal are re-heated for heat treating and annealing.
Abstract:
Reactive gas is released through a crystal source material or melt to react with impurities and carry the impurities away as gaseous products or as precipitates or in light or heavy form. The gaseous products are removed by vacuum and the heavy products fall to the bottom of the melt. Light products rise to the top of the melt. After purifying, dopants are added to the melt. The melt moves away from the heater and the crystal is formed. Subsequent heating zones re-melt and refine the crystal, and a dopant is added in a final heating zone. The crystal is divided, and divided portions of the crystal are re-heated for heat treating and annealing.
Abstract:
A process for controlling the amount of insoluble gas trapped by a silicon melt is disclosed. After a crucible is charged with polycrystalline silicon, a gas comprising at least about 10% of a gas having a high solubility in silicon is used as the purging gas for a period of time during melting. After the polycrystalline silicon charge has completely melted, the purge gas may be switched to a conventional argon purge. Utilizing a purge gas highly soluble in silicon for a period of time during the melting process reduces the amount of insoluble gases trapped in the charge and, hence, the amount of insoluble gases grown into the crystal that form defects on sliced wafers.
Abstract:
A method and system for determining polycrystalline silicon chunk size for use with a Czochralski silicon growing process. Polycrystalline silicon chunks are arranged on a measuring background. A camera captures an image of the chunks. An image processor processes the image and determines the dimensions of the chunks based on the captured image. A size parameter associated with the chunks is determined.
Abstract:
The present invention aims to improve thermal efficiency and to reduce melting time when a raw material in an auxiliary crucible is heated and melted by induction heating method. When an initial raw material 30a is at low temperature and its conductivity is relatively low, a conductive carbon cylinder 2 is arranged at such a height as to cover the entire side wall of the auxiliary crucible 1, and when high frequency current is applied on a high frequency coil 3, secondary induction current is generated on the carbon cylinder 2. Then, Joule heat is generated on the carbon cylinder 2 by the secondary induction current, and heat of the carbon cylinder 2 is transmitted to the raw material inside via the auxiliary crucible 1. Thus, the raw material is heated, and melting is started. When the raw material is melted, an insulating ceramic base 4 is arranged at such a position as to cover the entire side wall of the auxiliary crucible 1. Because conductivity of the raw material is gradually increased, secondary induction current is generated in the melt 30b, and Joule heat is generated in the melt 30b itself by the secondary induction current.
Abstract:
A charging material made from semiconductor material, is used for charging or recharging a melting crucible during the Czochralski crucible-pulling process. This charging material has a polycrystalline semiconductor rod, which at one end has a groove, and a monocrystalline semiconductor rod, which at one end has a tongue, which rods are coupled by means of a tongue-and-groove connection. There is also a holding system for holding a polycrystalline silicon rod during the Czochralski crucible-pulling process or the float zone process, which has a tongue-and-groove connection between the polycrystalline semiconductor rod, which at one end has a groove, and a monocrystalline semiconductor rod, which at one end has a tongue.
Abstract:
There are a device and method for protecting semiconductor material, wherein semiconductor material is processed on a surface of stabilized ice made from ultrapure water and particles of semiconductor material.
Abstract:
A crystal plate 1 is grown in a continuous process by first purifying a crystal source material, a crystal melt or powder, in a purification station 3. Valves 7 control the flow of purified crystal melt or source powder 9 to a first hot zone 11, whose temperature is above the melt temperature of the crystal. A dopant source 17 with controller 19 provides dopant to the liquefied crystal 15. The first heater zone 21 surrounding the first hot zone 11 heats the crystal above its melting temperature. The second heater zone 27 produces a temperature in the second zone which is below the melt temperature of the crystal. The liquefied crystal, the liquid solid interface and the first portion of the crystal are supported in a boat-shaped crucible container with a bottom 31 and side walls. As the crystal leaves the support plate 31 it passes on to a conveyor 33. The crystal moves within an enclosure 43, which has a noble gas or noble gas and reactant gas atmosphere 45. A large heater has a first zone 37 which heats the initial part of the crystal apparatus to a temperature below the melt temperature, and a second zone 39 which maintains the crystal at a lower temperature. A purified and doped crystal emerges from the enclosure.
Abstract:
Reactive gas is released through a crystal source material or melt to react with impurities and carry the impurities away as gaseous products or as precipitates or in light or heavy form. The gaseous products are removed by vacuum and the heavy products fall to the bottom of the melt. Light products rise to the top of the melt. After purifying, dopants are added to the melt. The melt moves away from the heater and the crystal is formed. Subsequent heating zones re-melt and refine the crystal, and a dopant is added in a final heating zone. The crystal is divided, and divided portions of the crystal are re-heated for heat treating and annealing.