Abstract:
The method for making a uniform, large-size single crystal of calcium fluoride includes placing a single precursor crystal of calcium fluoride in a tempering vessel provided with a cover; introducing calcium fluoride powder into the tempering vessel and subsequently heating the single precursor crystal, preferably in intimate contact with the calcium fluoride powder, in the tempering vessel together with the calcium fluoride powder for two or more hours at temperatures above 1150° C. to temper the precursor crystal and thus form the uniform, large-scale single crystal of calcium fluoride. The uniform large-sized single crystals of calcium fluoride can be used to make improved lens, prism, light-conducting rod, optical window or other optical component for DUV photolithography, steppers, excimer lasers, wafers, computer chips and electronic devices containing the wafers and chips.
Abstract:
A Group III metal element is heated so as to melt, a gas NH3 containing nitrogen atoms is injected into a melt 3 of the Group III metal element at a temperature lower than the melting point of a nitride to be obtained, thereby producing a nitride microcrystal of the Group III element having high wettability with the melt 3 in the melt 3 of the Group III metal element. A mixture of the Group III nitride microcrystal obtained as mentioned above and the Group III metal element solution is used as a starting material of a liquid phase growth or Group III nitride powders obtained by removing the Group III metal material from the mixture are used as a starting material of a vapor phase growth. Further, a seed crystal or a substrate crystal is immersed in a melt of a Group III element such as gallium, bubbles of a gas containing nitrogen such as ammonia are intermittently come into contact with the surface of the crystal, and the Group III element and the gas containing nitrogen are allowed to react with each other on the surface of the seed crystal or the substrate crystal, thereby allowing the nitride crystal of the Group III element to be grown on the surface of the seed crystal or substrate crystal.
Abstract:
There is provided a method for preparing a large and perfect oxide crystal useful for oxide superconductors and laser transmitting elements. In the present method for preparing a large oxide single crystalline material such as superconductive crystals of RE123, a crystal precursor material is supercooled prior to the solidification thereof in the course of crystal growth of the oxide by a supercooling solidification process, followed by subjecting said precursor material to continuous slow heating while keeping the supercooled condition to promote crystal growth, as shown in FIG. 7. Seed crystals may be added to the crystal precursor material prior to solidification, if necessary, as also shown in FIG. 7.
Abstract:
A method of making a bulk crystal substrate of a GaN single crystal includes the steps of forming a molten flux of an alkali metal in a reaction vessel and causing a growth of a GaN single crystal from the molten flux, wherein the growth is continued while replenishing a compound containing N from a source outside the reaction vessel.
Abstract:
An object of the present invention is to provide a fluoride crystal having a high transmittance with respect to an excimer laser and an excellent resistance with respect to a high output laser, and a production method therefore. The fluoride crystal of the present invention contains at least one kind of atom selected from the group consisting of Zn, Cd, Pb, Li, Bi and Na with a content of 10 ppm or less, and has an internal transmittance of 70% or more with respect to 135 nm wavelength light. The method of the present invention of producing a fluoride crystal comprises conducting a refining step of adding a scavenger to a calcium fluoride raw material and refining the raw material at least once, and a crystal growth step of further adding the scavenger to the refined raw material and growing a crystal by using a crucible lowering method, wherein the amount of the scavenger to be added in the first refining step is 0.04 to 0.1 mol % based on the raw material, and the total amount of the scavenger to be added in the subsequent refining steps and the crystal growth step is 10% to 50% based on the amount of the scavenger to be added in the first refining step.
Abstract:
Reactive gas is released through a crystal source material or melt to react with impurities and carry the impurities away as gaseous products or as precipitates or in light or heavy form. The gaseous products are removed by vacuum and the heavy products fall to the bottom of the melt. Light products rise to the top of the melt. After purifying, dopants are added to the melt. The melt moves away from the heater and the crystal is formed. Subsequent heating zones re-melt and refine the crystal, and a dopant is added in a final heating zone. The crystal is divided, and divided portions of the crystal are re-heated for heat treating and annealing.
Abstract:
Disclosed are a P-type GaAs single crystal having an average dislocation density of 500 cm−2 or lower, and a manufacturing method therefor. The P-type GaAs single crystal is characterized by containing, as dopants, Si at an atomic concentration of from 1×1017 to 1×1019 cm−3 and Zn at an atomic concentration of from 2×1018 to 6×1019 cm−3. Further, as another example, B is contained at an atomic concentration of from 1×1017 to 1×1020 cm−3.
Abstract translation:公开了平均位错密度为500cm -2以下的P型GaAs单晶及其制造方法。 P型GaAs单晶的特征在于,以1×10 17〜1×10 19 cm -3的原子浓度和2×10 18〜6×10 19 cm -3的原子浓度的Zn作为掺杂剂。 此外,作为另一个例子,B的原子浓度为1×10 17〜1×10 20 cm -3。