Compound semiconductor substrate grown on metal layer, method of manufacturing the same, and compound semiconductor device using the same
    31.
    发明授权
    Compound semiconductor substrate grown on metal layer, method of manufacturing the same, and compound semiconductor device using the same 有权
    在金属层上生长的化合物半导体衬底,其制造方法和使用其的化合物半导体器件

    公开(公告)号:US08158501B2

    公开(公告)日:2012-04-17

    申请号:US12967897

    申请日:2010-12-14

    Abstract: The present invention relates to a compound semiconductor substrate and a method for manufacturing the same. The present invention provides the manufacturing method which coats spherical balls on a substrate, forms a metal layer between the spherical balls, removes the spherical balls to form openings, and grows a compound semiconductor layer from the openings. According to the present invention, the manufacturing method can be simplified and grow a high quality compound semiconductor layer rapidly, simply and inexpensively, as compared with a conventional ELO (Epitaxial Lateral Overgrowth) method or a method for forming a compound semiconductor layer on a metal layer. And, the metal layer serves as one electrode of a light emitting device and a light reflecting film to provide a light emitting device having reduced power consumption and high light emitting efficiency.

    Abstract translation: 化合物半导体基板及其制造方法技术领域本发明涉及化合物半导体基板及其制造方法。 本发明提供一种制造方法,其在基板上涂布球形球,在球形球之间形成金属层,去除球形球以形成开口,并从开口生长化合物半导体层。 根据本发明,与传统的ELO(外延横向生长)方法或在金属上形成化合物半导体层的方法相比,可以简化和简单且廉价地生产高质量的化合物半导体层 层。 并且,金属层用作发光器件和光反射膜的一个电极,以提供具有降低的功率消耗和高发光效率的发光器件。

    2-dimensional line-defects controlled silicon ingot, wafer and epitaxial wafer, and manufacturing process and apparatus therefor
    32.
    发明授权
    2-dimensional line-defects controlled silicon ingot, wafer and epitaxial wafer, and manufacturing process and apparatus therefor 有权
    二维线缺陷控制硅锭,晶圆和外延晶片及其制造工艺和设备

    公开(公告)号:US08114215B2

    公开(公告)日:2012-02-14

    申请号:US12256663

    申请日:2008-10-23

    Abstract: The present invention reports a defect that has not been reported, and discloses a defect-controlled silicon ingot, a defect-controlled wafer, and a process and apparatus for manufacturing the same. The new defect is a crystal defect generated when a screw dislocation caused by a HMCZ (Horizontal Magnetic Czochralski) method applying a strong horizontal magnetic field develops into a jogged screw dislocation and propagates to form a cross slip during thermal process wherein a crystal is cooled. The present invention changes the shape and structure of an upper heat shield structure arranged between a heater and an ingot above a silicon melt, and controls initial conditions or operation conditions of a silicon single crystalline ingot growth process to reduce a screw dislocation caused by a strong horizontal magnetic field and prevent the screw dislocation from propagating into a cross slip.

    Abstract translation: 本发明报道了未报道的缺陷,并公开了缺陷控制硅锭,缺陷控制晶片及其制造方法和装置。 新的缺陷是当由施加强水平磁场的HMCZ(Horizo​​ntal Magnetic Czochralski)方法引起的螺旋位错产生于慢跑螺钉位错时产生的晶体缺陷,并且在冷却晶体的热处理期间传播以形成交叉滑移。 本发明改变了布置在硅熔体上方的加热器和锭之间的上部隔热结构的形状和结构,并且控制了硅单晶锭生长过程的初始条件或操作条件以减少由强的 水平磁场,防止螺丝错位传播到十字滑移。

    APPARATUS FOR MANUFACTURING HIGH-QUALITY SEMICONDUCTOR SINGLE CRYSTAL INGOT AND METHOD USING THE SAME
    34.
    发明申请
    APPARATUS FOR MANUFACTURING HIGH-QUALITY SEMICONDUCTOR SINGLE CRYSTAL INGOT AND METHOD USING THE SAME 审中-公开
    用于制造高质量半导体单晶的装置和使用该晶体的方法

    公开(公告)号:US20090183670A1

    公开(公告)日:2009-07-23

    申请号:US12356249

    申请日:2009-01-20

    CPC classification number: C30B15/305 C30B29/06 Y10T117/1032

    Abstract: The present invention relates to an apparatus for manufacturing a high-quality semiconductor single crystal ingot and a method using the same. The apparatus of the present invention includes a quartz crucible, a heater installed around a side wall of the quartz crucible, a single crystal pulling means for pulling a single crystal from the semiconductor melt received in the quartz crucible, and a magnetic field applying means for forming a Maximum Gauss Plane (MGP) at a location of ML-1000 mm to ML-350 mm based on a Melt Level (ML) of the melt surface, and applying a strong magnetic field of 3000 to 5500 Gauss to an intersection between the MGP and the side wall of the quartz crucible and a weak magnetic field of 1500 to 3000 Gauss below a solid-liquid interface.

    Abstract translation: 本发明涉及用于制造高质量半导体单晶锭的装置及其使用方法。 本发明的装置包括石英坩埚,安装在石英坩埚的侧壁周围的加热器,用于从接收在石英坩埚中的半导体熔体中拉出单晶的单晶拉制装置,以及用于 基于熔体表面的熔融水平(ML),在ML-1000mm的位置形成最大高斯平面(MGP)至ML-350mm,并将3000至5500高斯的强磁场施加到 MGP和石英坩埚的侧壁以及低于固液界面的1500至3000高斯的弱磁场。

    2-DIMENSIONAL LINE-DEFECTS CONTROLLED SILICON INGOT, WAFER AND EPITAXIAL WAFER, AND MANUFACTURING PROCESS AND APPARATUS THEREFOR
    35.
    发明申请
    2-DIMENSIONAL LINE-DEFECTS CONTROLLED SILICON INGOT, WAFER AND EPITAXIAL WAFER, AND MANUFACTURING PROCESS AND APPARATUS THEREFOR 有权
    二维线缺陷控制硅芯,波形和外延波形及其制造工艺及其设备

    公开(公告)号:US20090169460A1

    公开(公告)日:2009-07-02

    申请号:US12256663

    申请日:2008-10-23

    Abstract: The present invention reports a defect that has not been reported, and discloses a defect-controlled silicon ingot, a defect-controlled wafer, and a process and apparatus for manufacturing the same. The new defect is a crystal defect generated when a screw dislocation caused by a HMCZ (Horizontal Magnetic Czochralski) method applying a strong horizontal magnetic field develops into a jogged screw dislocation and propagates to form a cross slip during thermal process wherein a crystal is cooled. The present invention changes the shape and structure of an upper heat shield structure arranged between a heater and an ingot above a silicon melt, and controls initial conditions or operation conditions of a silicon single crystalline ingot growth process to reduce a screw dislocation caused by a strong horizontal magnetic field and prevent the screw dislocation from propagating into a cross slip.

    Abstract translation: 本发明报道了未报道的缺陷,并公开了缺陷控制硅锭,缺陷控制晶片及其制造方法和装置。 新的缺陷是当由施加强水平磁场的HMCZ(Horizo​​ntal Magnetic Czochralski)方法引起的螺旋位错产生于慢跑螺钉位错时产生的晶体缺陷,并且在冷却晶体的热处理期间传播以形成交叉滑移。 本发明改变了布置在硅熔体上方的加热器和锭之间的上部隔热结构的形状和结构,并且控制了硅单晶锭生长过程的初始条件或操作条件以减少由强的 水平磁场,防止螺丝错位传播到十字滑移。

    METHOD FOR CLEANING SILICON WAFER
    36.
    发明申请
    METHOD FOR CLEANING SILICON WAFER 审中-公开
    清洗硅砂的方法

    公开(公告)号:US20090095321A1

    公开(公告)日:2009-04-16

    申请号:US12244330

    申请日:2008-10-02

    CPC classification number: H01L21/02052

    Abstract: A method for cleaning a silicon wafer includes (S11) cleaning surfaces of a silicon wafer using an SC-1 cleaning solution according to standard clean 1; (S12) rinsing the surfaces of the silicon wafer, cleaned in the step S11, using deionized water; (S13) cleaning the surfaces of the silicon wafer, rinsed in the step S12, using a cleaning solution including hydrochloric acid, ozone water and deionized water; (S14) rinsing the surfaces of the silicon wafer, cleaned in the step S13, using deionized water; and (S15) drying the surfaces of the silicon wafer, rinsed in the step S14. A stable oxide film is formed on the surfaces of the silicon wafer using a material having a strong oxidizing ability while a cleaning process is performed. Therefore, a problem that as time passes, external impurities are attached to the surfaces of the silicon wafer can be solved by a simple and safe process.

    Abstract translation: 清洗硅晶片的方法包括:(S11)使用根据标准清洁1的SC-1清洗溶液清洗硅晶片的表面; (S12)使用去离子水清洗在步骤S11中清洗的硅晶片的表面; (S13)使用包括盐酸,臭氧水和去离子水的清洗溶液清洗在步骤S12中冲洗的硅晶片的表面; (S14)使用去离子水清洗在步骤S13中清洗的硅晶片的表面; 和(S15)在步骤S14中清洗硅晶片的表面。 在执行清洁处理的同时,使用具有强氧化能力的材料在硅晶片的表面上形成稳定的氧化膜。 因此,随着时间的流逝,外部杂质附着在硅晶片的表面上的问题可以通过简单安全的工艺来解决。

    Method for producing high quality silicon single crystal ingot and silicon single crystal wafer made thereby
    37.
    发明授权
    Method for producing high quality silicon single crystal ingot and silicon single crystal wafer made thereby 有权
    由此制造高品质硅单晶锭和硅单晶晶片的方法

    公开(公告)号:US07427325B2

    公开(公告)日:2008-09-23

    申请号:US11643201

    申请日:2006-12-21

    Applicant: Hyon-Jong Cho

    Inventor: Hyon-Jong Cho

    Abstract: In a method for producing a high quality silicon single crystal by the Czochralski method, a lower portion of a solid-liquid interface of a single crystal growth is divided into a central part and a circumferential part, and the temperature gradient of the central part and the temperature gradient of the circumferential part are separately controlled. When a silicon melt located at a lower portion of a solid-liquid interface of a single crystal growth is divided into a central part melt and a circumferential part melt, the method controls the temperature gradient of the central part melt by directly controlling the temperature distribution of a melt and indirectly controls the temperature gradient of the circumferential part melt by controlling the temperature gradient of the single crystal, thereby effectively controlling the overall temperature distribution of the melt, thus producing a high quality single crystal ingot free of defects with a high growth velocity.

    Abstract translation: 在通过切克劳斯基法生产高品质硅单晶的方法中,单晶生长的固液界面的下部被分成中心部分和周边部分,中心部分和 圆周部分的温度梯度被单独控制。 当位于单晶生长的固 - 液界面的下部的硅熔体被分成中心部分熔体和圆周部分熔化时,该方法通过直接控制温度分布来控制中心熔体的温度梯度 并通过控制单晶的温度梯度来间接地控制圆周部分熔体的温度梯度,从而有效地控制熔体的总体温度分布,从而产生没有高生长缺陷的高质量单晶锭 速度。

    High quality single crystal and method of growing the same
    38.
    发明授权
    High quality single crystal and method of growing the same 有权
    高品质单晶和生长方法相同

    公开(公告)号:US07416603B2

    公开(公告)日:2008-08-26

    申请号:US11254245

    申请日:2005-10-19

    Applicant: Hyon-Jong Cho

    Inventor: Hyon-Jong Cho

    Abstract: Disclosed is a method of growing a single crystal from a melt contained in a crucible. The method includes the step of making the temperature of a melt increase gradually to a maximum point and then decrease gradually along the axis parallel to the lengthwise direction of the single crystal from the interface of the single crystal and the melt to the bottom of the crucible. The increasing temperature of the melt is kept to preferably have a greater temperature gradient than the decreasing temperature thereof. Preferably, the axis is set to pass through the center of the single crystal. Preferably, the convection of the inner region of the melt is made smaller than that of the outer region thereof.

    Abstract translation: 公开了从包含在坩埚中的熔体中生长单晶的方法。 该方法包括使熔体的温度逐渐升高到最大点,然后沿着与单晶长度方向平行的轴从晶体和熔体的界面到坩埚的底部逐渐减小的步骤 。 保持熔体的温度升高优选具有比其降低的温度更大的温度梯度。 优选地,轴被设定为穿过单晶的中心。 优选地,熔体的内部区域的对流被制成小于其外部区域的对流。

    Method for cleaning silicon wafer
    39.
    发明申请
    Method for cleaning silicon wafer 审中-公开
    硅晶片清洗方法

    公开(公告)号:US20080156349A1

    公开(公告)日:2008-07-03

    申请号:US11998919

    申请日:2007-12-03

    CPC classification number: C11D11/0047 C11D7/08 H01L21/02052

    Abstract: The present invention relates to a method for cleaning a silicon wafer, including (S1) a first cleaning step for cleaning surfaces of a silicon wafer using an SC-1 cleaning solution according to standard clean 1; (S2) a second cleaning step for cleaning the surfaces of the silicon wafer, cleaned in the first cleaning step, using an SC-2 cleaning solution according to standard clean 2; (S3) a third cleaning step for cleaning the surfaces of the silicon wafer, cleaned in the second cleaning step, using a hydrogen fluoride (HF) solution; and (S4) a fourth cleaning step for cleaning the surfaces of the silicon wafer, cleaned in the third cleaning step, using an ozone water. The present invention removes effectively metallic impurities on the surfaces of the silicon wafer and improves the surface roughness of the silicon wafer, and thus is capable of providing a silicon wafer with a remarkably improved physical characteristic.

    Abstract translation: 本发明涉及一种用于清洗硅晶片的方法,包括:(S1)第一清洗步骤,用于使用根据标准清洁1的SC-1清洗溶液清洁硅晶片的表面; (S 2)使用根据标准清洁2的SC-2清洗溶液清洗在第一清洗步骤中清洁的硅晶片的表面的第二清洁步骤; (S 3)使用氟化氢(HF)溶液清洗在第二清洗步骤中清洁的硅晶片的表面的第三清洗步骤; 和(S 4)使用臭氧水清洗在第三清洗步骤中清洁的硅晶片的表面的第四清洁步骤。 本发明有效地去除硅晶片表面的金属杂质,提高硅晶片的表面粗糙度,从而能够提供具有显着提高的物理特性的硅晶片。

    Silicon Wafer Grinding Apparatus, Retaining Assembly Used for the Same and Silicon Wafer Flatness Correcting Method
    40.
    发明申请
    Silicon Wafer Grinding Apparatus, Retaining Assembly Used for the Same and Silicon Wafer Flatness Correcting Method 审中-公开
    硅晶片研磨设备,用于相同的硅晶片平坦度校正方法

    公开(公告)号:US20070141958A1

    公开(公告)日:2007-06-21

    申请号:US11612008

    申请日:2006-12-18

    Applicant: Do Moon

    Inventor: Do Moon

    CPC classification number: B24B37/32 B24B37/30

    Abstract: A silicon wafer grinding apparatus, a retaining assembly used for the same, and a silicon wafer flatness correcting method are provided More particularly, a silicon wafer grinding apparatus, a retaining assembly used for the same, and a silicon wafer flatness correcting method for correcting a wafer flatness in a final grinding process are provided The silicon wafer grinding apparatus includes a grinding surface plate having a grinding pad attached thereon; a grinding head arranged opposite to the grinding surface plate and rotated in the same direction as that of the grinding surface plate; a backing film attached at a lower portion of the grinding head for supporting a wafer; and a retainer ring having an inner diameter (a wafer diameter +α) greater than a diameter of the wafer by as much as a and disposed on the backing film. By forming a diameter or physical properties of a part of the backing film of the wafer retaining assembly, the wafer flatness of the final grinding may be corrected.

    Abstract translation: 提供硅晶片研磨装置,用于其的保持组件和硅晶片平整度校正方法更具体地,提供一种硅晶片研磨装置,用于其的保持组件和用于校正 提供最终研磨工艺中的晶片平坦度硅晶片研磨设备包括其上附着有研磨垫的研磨面板; 研磨头,与研磨面板相对设置并沿与研磨面板相同的方向旋转; 附着在研磨头的下部以支撑晶片的背衬膜; 以及具有大于晶片直径的内径(晶片直径+α)的保持环,并且设置在背衬膜上。 通过形成晶片保持组件的背衬膜的一部分的直径或物理性质,可以校正最终研磨的晶片平整度。

Patent Agency Ranking