Abstract:
Disclosed are a semiconductor device, a light emitting device, and a method of manufacturing the same. The semiconductor device includes a substrate, a plurality of rods aligned on the substrate, a metal layer disposed on the substrate between the rods, and a semiconductor layer disposed on and between the rods. Electrical and optical characteristics of the semiconductor device are improved due to the metal layer.
Abstract:
A method of manufacturing a nitride semiconductor device is disclosed. The method includes forming a gallium nitride (GaN) epitaxial layer on a first support substrate, forming a second support substrate on the GaN epitaxial layer, forming a passivation layer on a surface of the other region except for the first support substrate, etching the first support substrate by using the passivation layer as a mask, and removing the passivation layer and thereby exposing the second support substrate and the GaN epitaxial layer.
Abstract:
The present invention relates to a nitride semiconductor substrate such as gallium nitride substrate and a method for manufacturing the same. The present invention forms a plurality of trenches on a lower surface of a base substrate that are configured to absorb or reduce stresses on the base substrate that become larger from a central portion of the base substrate towards a peripheral portion when growing a nitride semiconductor film. That is, the present invention forms the trenches on the lower surface of the base substrate such that pitches get smaller or widths or depths get larger from the central portion of the base substrate towards the peripheral portion.
Abstract:
Provided is a method for preparing a substrate for growing gallium nitride and a gallium nitride substrate. The method includes performing thermal cleaning on a surface of a silicon substrate, forming a silicon nitride (Si3N4) micro-mask on the surface of the silicon substrate in an in situ manner, and growing a gallium nitride layer through epitaxial lateral overgrowth (ELO) using an opening in the micro-mask. According to the method, by improving the typical ELO, it is possible to simplify the method for preparing the substrate for growing gallium nitride and the gallium nitride substrate and reduce process cost.
Abstract translation:提供一种制备用于生长氮化镓和氮化镓衬底的衬底的方法。 该方法包括在硅衬底的表面上进行热清洗,以原位方式在硅衬底的表面上形成氮化硅(Si 3 N 4)微掩模,并通过外延横向过度生长(ELO)生长氮化镓层, 在微面罩中使用开口。 根据该方法,通过改善典型的ELO,可以简化制备用于生长氮化镓和氮化镓衬底的衬底的方法,并降低工艺成本。
Abstract:
The present invention relates to a nitride semiconductor substrate such as gallium nitride substrate and a method for manufacturing the same. The present invention forms a plurality of trenches on a lower surface of a base substrate that are configured to absorb or reduce stresses applied larger when growing a nitride semiconductor film on the base substrate from a central portion of the base substrate towards a peripheral portion. That is, the present invention forms the trenches on the lower surface of the base substrate such that pitches get smaller or widths or depths get larger from the central portion of the base substrate towards the peripheral portion.
Abstract:
The present invention relates to a compound semiconductor substrate and a method for manufacturing the same. The present invention provides the manufacturing method which coats spherical balls on a substrate, forms a metal layer between the spherical balls, removes the spherical balls to form openings, and grows a compound semiconductor layer from the openings. According to the present invention, the manufacturing method can be simplified and grow a high quality compound semiconductor layer rapidly, simply and inexpensively, as compared with a conventional ELO (Epitaxial Lateral Overgrowth) method or a method for forming a compound semiconductor layer on a metal layer. And, the metal layer serves as one electrode of a light emitting device and a light reflecting film to provide a light emitting device having reduced power consumption and high light emitting efficiency.
Abstract:
There is provided a windmill-shaped loop antenna including: a dielectric substrate; a first radiation unit disposed on a top surface of the dielectric substrate and including a metal pattern having loop pieces; a second radiation unit disposed at a bottom surface of the dielectric substrate and including a metal pattern having loop pieces arranged not to face the loop pieces of the first radiation unit; and a plurality of identical transmission line from a center of the top and bottom surfaces of the dielectric substrate to the first and second radiation units, which form windmill-shaped metal pattern with the first and second radiation unit.
Abstract:
One aspect of the present invention relates to a lawn monitoring system, and more specifically, to a lawn monitoring system installed at various locations where lawn is created, such as a golf course, a soccer field, a baseball field, etc., to receive lawn status information, thereby enabling a lawn manager to manage the lawn based on the information received from the system. The lawn monitoring system according to an embodiment of the present invention has effects of accurately and efficiently transmitting the status information of the lawn in places where the lawn is created, such as a golf course, a soccer field, a baseball field, to a lawn manager.
Abstract:
Disclosed are a semiconductor device, a light emitting device and a method for manufacturing the same. The semiconductor device includes a substrate, a plurality of rods disposed on the substrate, a plurality of particles disposed between the rods and on the substrate, and a first semiconductor layer disposed on the rods. The method for manufacturing the semiconductor device includes preparing a substrate, disposing a plurality of first particles on the substrate, and forming a plurality of rods by etching a portion of the substrate by using the first particles as an etch mask. The semiconductor device effectively reflects in an upward direction light by the above particles, so that light efficiency is improved. The rods are easily formed by using the first particles.
Abstract:
Disclosed is a method for formation of a thermal bather coating on a gas turbine during operation thereof, which includes addition of an organic compound containing silicon to a fuel under a first condition in order to form a base layer on the surface of a part coming into contact with a combustion gas of the fuel in the gas turbine during operation thereof, as well as addition of the organic compound containing silicon to the fuel under a second condition in order to form a porous layer having more pores than the base layer above the base layer.