Abstract:
A method for improving bioactivity of a surface of a surgical suture and sutures prepared thereby provides forming a gas-cluster ion-beam (GCIB) in a reduced-pressure chamber, introducing a surgical suture into the reduced-pressure chamber, and irradiating at least a first portion of the surface of said surgical suture with a GLIB derived beam.
Abstract:
Apparatus and methods are disclosed for employing an accelerated neutral beam derived from an accelerated gas cluster ion beam as a physical etching beam for providing reduced material mixing at the etched surface, compared to previous techniques. This results in the ability to achieve improved depth profile resolution in measurements by analytical instruments such as SIMS and XPS (or ESCA) analytical instruments.
Abstract:
A method of disinfecting a biological material provides disposing at least a portion of the biological material in the path of the gas cluster ion beam or in the path of the accelerated neutral beam so as to irradiate at least a portion of the biological material to disinfect the irradiated portion.
Abstract:
Irradiation of a surface of a material with a gas cluster ion beam modifies the wettability of the surface. The wettability may be increased or decreased dependent on the characteristics of the gas cluster ion beam. Improvements in wettability of a surface by the invention exceed those obtained by conventional plasma cleaning or etching. The improvements may be applied to surfaces of medical devices, such as vascular stents for example, and may be used to enable better wetting of medical device surfaces with liquid drugs in preparation for adhesion of the drug to the device surfaces. A mask may be used to limit processing to a portion of the surface. Medical devices formed by using the methods of the invention are disclosed.
Abstract:
The invention provide for a method of improving bioactivity of a surface of an object. The invention further provides for a method of preparing an object for medical implantation. The invention even further provide for an article made by a method comprising the steps of forming a gas-cluster ion-beam in a reduced-pressure chamber, introducing the article into the reduced-pressure chamber, and irradiating at least a portion of the surface of the object with the gas-cluster ion-beam. The invention still further provides for an article for medical or surgical implantation made by a method comprising selecting at least a portion of a surface of the object for increased bioactivity, forming a gas-cluster ion-beam in a reduced-pressure chamber, introducing the object into the reduced-pressure chamber, and irradiating the selected at least a portion with the gas-cluster ion-beam to increase the bioactivity of the at least a portion.
Abstract:
The invention provides methods for surgical grafting of a tissue. The method comprises the steps of explanting a graft tissue from a donor, irradiating at least a first portion of the graft tissue with an ion beam, and surgically grafting the graft tissue into a recipient.
Abstract:
A multi-layer drug coated medical device such as for example an expandable vascular drug eluting stent is formed by vacuum pulse spray techniques wherein each layer is irradiated to improve adhesion and/or drug elution properties prior to formation of subsequent layers. Layers may be homogeneous or of diverse drugs. Layers may incorporate a non-polymer elution-retarding material. Layers may alternate with one or more layers of non-polymer elution-retarding materials. Polymer binders and/or matrices are not used in the formation of the coatings, yet the pure drug coatings have good mechanical and elution rate properties. Systems, methods and medical device articles are disclosed.
Abstract:
A method of modifying the surface of a medical device to release a drug in a controlled way by providing a barrier layer on the surface of one or more drug coatings. The barrier layer consists of modified drug material converted to a barrier layer by irradiation by an accelerated neutral beam derived from an accelerated gas cluster ion beam. Also medical devices formed thereby.
Abstract:
A method for preparing a biological material for implanting provides irradiating at least a portion of the surface of the material with an accelerated Neutral Beam.
Abstract:
An apparatus and method provided a drug layer formed on a surface region of a medical device, the drug layer comprised of a drug deposition and a carbonized or densified layer formed from the drug deposition by irradiation on an outer surface of the drug deposition, wherein the carbonized or densified layer does not penetrate through the drug deposition and is adapted to release drug from the drug deposition at a predetermined rate.