Abstract:
A complementary metal-oxide-semiconductor (CMOS) device and methods of formation thereof are disclosed. In a particular example, a method of forming a CMOS device includes forming a first layer on an extension layer of a wafer, forming a first gate on a portion of the first layer, and forming an expansion region proximate to the extension layer. The method also includes removing a portion of the first gate to create a cavity and removing a portion of the first layer to extend the cavity to the extension layer.
Abstract:
An apparatus comprises a substrate and a fin-type semiconductor device extending from the substrate. The fin type semiconductor device comprises a fin that comprises a first region having a first doping concentration and a second region having a second doping concentration. The first doping concentration is greater than the second doping concentration. The fin type semiconductor device also comprises an oxide layer. Prior to source and drain formation of the fin-type semiconductor device, a doping concentration of the oxide layer is less than the first doping concentration.
Abstract:
A particular metal-oxide-metal (MOM) capacitor device includes a conductive gate material coupled to a substrate. The MOM capacitor device further includes a first metal structure coupled to the conductive gate material. The MOM capacitor device further includes a second metal structure coupled to the substrate and proximate to the first metal structure.
Abstract:
An exemplary high performance P-type field-effect transistor (PFET) fabricated on a silicon (Si) germanium (Ge)(SiGe) buffer layer with a SiGe source and drain having a Ge percentage higher than a threshold that causes dislocations at a Si substrate interface is disclosed. A source and drain including a Ge percentage above a 45% threshold provide increased compressive strain in the channel for higher performance of the PFET. Dislocations are avoided in the lattices of the source and drain by forming the PFET on a SiGe buffer layer rather than directly on a Si substrate and the SiGe buffer layer has a percentage of Ge less than a percentage of Ge in the source and drain. In one example, a lattice of the buffer layer is relaxed by implanting dislocations at an interface of the buffer layer and the Si substrate and annealing the buffer layer.
Abstract:
Disclosed are examples of multiple bit magnetoresistive random access memory (MRAM) cells. A multiple bit MRAM cell may comprise a fixed layer, alternately stacked N tunnel barriers and N free layers, and a tunnel cap. N, which may represent number of bits of the MRAM cell, may be greater than or equal to two. Magnetic moment of the fixed layer may be fixed in one perpendicular direction. Magnetic moments of the free layers may be switchable from one to other perpendicular directions upon application of switch currents. The switch currents may be different for different layers. The magnetic moments of the free layers may be switched separately or otherwise independently of other free layers when the switch currents are applied separately.
Abstract:
Disclosed are semiconductor devices including a double gate metal oxide semiconductor (MOS) transistor and methods for fabricating the same. The double gate MOS transistor includes a first back gate, a second back gate, and a first dielectric layer disposed on the first back gate and on the second back gate. An MX2 material layer is disposed on the first dielectric layer, a second dielectric layer disposed on the MX2 material layer, and a work function metal (WFM) is disposed on the second dielectric layer. A front gate is disposed on the WFM, which fills a space between the first back gate and the second back.
Abstract:
Three-dimensional (3D) interconnect structures employing via layer conductive structures in via layers are disclosed. The via layer conductive structures in a signal path in an interconnect structure are disposed in respective via layers adjacent to metal lines in metal layers. The via layer conductive structures increase the conductive cross-sections of signal paths between devices in an integrated circuit (IC) or to/from an external contact. The via layer conductive structures provide one or both of supplementing the height dimensions of metal lines and electrically coupling metal lines in the same or different metal layers to increase the conductive cross-section of a signal path. The increased conductive cross-section reduces current-resistance (IR) drop of signals and increases signal speed. As metal track pitches are reduced in size, signal path resistance increases. The via layer conductive structures are provided to reduce or avoid an even greater increase in resistance in the signal paths.
Abstract:
A gate-all-around (GAA) transistor has an insulator on a substrate. The GAA transistor also may have different crystalline structures for P-type work material and N-type work material. The GAA transistor includes one or more channels positioned between a source region and a drain region. The one or more channels, which may be nanowire, nanosheet, or nanoslab semiconductors, are surrounded along a longitudinal axis by gate material. At a first end of the channel is a source region and at an opposite end of the channel is a drain region. To reduce parasitic capacitance between a bottom gate section and a substrate, an insulator is added on the substrate. Further improvements are made in performance of a circuit having both P-type work material and N-type work material by providing different crystalline lattice structures for the work material.
Abstract:
A metal-insulator-semiconductor (MIS) resistive random access memory (RRAM) (MIS RRAM) device and MIS RRAM bit cell circuit are disclosed. A RRAM bit cell includes a RRAM device that can store a memory state and an access transistor to control access to the RRAM device. The RRAM device stores data as an electrical resistance formed in an oxide layer by applying a voltage differential between the top and bottom electrodes through the access transistor to generate an electric field in the oxide layer. This structure is similar to a metal gate formed over a channel region of a transistor. Forming the bottom electrode of the MIS RRAM device in a semiconductor structure may allow the dimensions of the electrodes of the MIS RRAM device to be scaled down to the dimensions of a transistor gate, because the MIS RRAM device structure can be fabricated with the transistor in a compatible process.
Abstract:
A capacitor may include a first conductive layer forming a first capacitor plate, a second conductive layer forming a second capacitor plate, and a first insulating material on the first conductive layer. The first insulating material may include a positive capacitance material. The capacitor may further include a second insulating material disposed over the first insulating material and between the first insulating material and the second conductive layer. The second insulating material may include a negative capacitance ferroelectric material.