Abstract:
A passive discrete device may include a first asymmetric terminal and a second asymmetric terminal. The passive discrete device may further include first internal electrodes extended to electrically couple to a first side and a second side of the first asymmetric terminal. The passive discrete device may also include second internal electrodes extended to electrically couple to a first side and a second side of the second asymmetric terminal.
Abstract:
A package-on-package (PoP) structure includes a first die, a second die, and a memory device electrically coupled to the first die and the second die by an interposer between the first die and the second die. The interposer includes copper-filled vias formed within a mold.
Abstract:
A package substrate is provided that includes a core substrate and a capacitor embedded in the core substrate including a first side. The capacitor includes a first electrode and a second electrode disposed at opposite ends of the capacitor. The package also includes a first power supply metal plate extending laterally in the core substrate. The first power supply metal plate is disposed directly on the first electrode of the capacitor from the first side of the core substrate. A first via extending perpendicular to the first metal plate and connected to the first power supply metal plate from the first side of the core substrate.
Abstract:
An integrated device package includes a package substrate, a die coupled to the package substrate, an encapsulation layer encapsulating the die, and at least one sheet of electrically conductive material configured to operate as an inductor. The sheet of electrically conductive material is at least partially encapsulated by the encapsulation layer. The sheet of electrically conductive material is configured to operate as a solenoid inductor. The sheet of electrically conductive material includes a first sheet portion, a second sheet portion coupled to the first sheet portion, where the first sheet portion and the second sheet portion form a first winding of the inductor, a first terminal portion coupled to the first sheet portion, and a second terminal portion coupled to the second sheet portion. The first sheet portion is formed on a first level of the sheet. The second sheet portion is formed on a second level of the sheet.
Abstract:
A method for forming a package-on-package (POP) structure is disclosed. The method includes placing a post on a first integrated circuit (IC) package such that a solder coating disposed on a first surface of the post is between the post and a second surface of the first IC package. The post is placed at a distance from a die along a particular axis of the die. The particular axis is substantially parallel to the second surface. The first IC package includes the die. The method also includes forming a conductive path between a second IC package and the first IC package via the post and a solder bump. The solder bump is disposed between the post and the second IC package.
Abstract:
An integrated device package includes a base portion, a redistribution portion, a first die and a second die. The base portion includes a photo imageable layer, a bridge that is at least partially embedded in the photo imageable layer, and a set of vias in the photo imageable layer. The bridge includes a first set of interconnects comprising a first density. The set of vias includes a second density. The redistribution portion is coupled to base portion. The redistribution portion includes at least one dielectric layer, a second set of interconnects coupled to the first set of interconnects, and a third set of interconnects coupled to the set of vias. The first die is coupled to the redistribution portion. The second die is coupled to the redistribution portion, where the first die and the second die are coupled to each other through an electrical path that includes the bridge.
Abstract:
Some novel features pertain to an integrated device that includes an encapsulation layer, a via structure traversing the encapsulation layer, and a pad. The via structure includes a via that includes a first side, a second side, and a third side. The via structure also includes a barrier layer surrounding at least the first side and the third side of the via. The pad is directly coupled to the barrier layer of the via structure. In some implementations, the integrated device includes a first dielectric layer coupled to a first surface of the encapsulation layer. In some implementations, the integrated device includes a substrate coupled to a first surface of the encapsulation layer. In some implementations, the integrated device includes a first die coupled to the substrate, where the encapsulation layer encapsulates the first die. In some implementations, the via includes a portion configured to operate as a pad.
Abstract:
Integrated circuit (IC) packages employing added metal for embedded metal traces in an ETS-based substrate for reduced signal path impedance. An IC package includes a package substrate and an ETS metallization layer disposed on the package substrate. To mitigate or offset an increase in impedance in longer signal paths between die circuitry and the package substrate that can result in decreased signaling speed and/or increased signal loss, added metal interconnects are coupled to embedded metal traces in the ETS metallization layer. Thus, embedded metal traces of the ETS metallization layer coupled to signal/ground signal paths of the die are increased in metal surface area. Increasing metal surface area of embedded metal traces coupled to the signal/ground signal paths of a die increases capacitance of such signal/ground signal paths. Increasing capacitance of signal/ground signal paths decreases impedance of the signal/ground signal paths to mitigate or reduce signaling delay and/or loss.
Abstract:
A package comprising an integrated device and a substrate. The integrated device is coupled to the substrate. The substrate includes a core layer, at least one first dielectric layer coupled to a first surface of the core layer, and at least one second dielectric layer coupled to a second surface of the core layer. The substrate includes a match structure located in the core layer. The match structure includes at least one first match interconnect extending vertically and horizontally in the match structure. The match structure also includes at least one second match interconnect extending vertically in the match structure. The at least one first match interconnect and the at least one second match interconnect are configured for skew matching.
Abstract:
Some features pertain to a hybrid package that includes a die, a first substrate structure, and a first metallization structure that is at least partially coplanar with the substrate. The die is electrically coupled to the first metallization structure and the first substrate through a second metallization structure. The first metallization structure is configured to provide an electrical path for data signaling. The second metallization structure is configured as a ground plane and is coupled to a ground signal. The first substrate structure is configured to provide an electrical path for power signaling.