Abstract:
A method of forming defect-free relaxed SiGe fins is provided. Embodiments include forming fully strained defect-free SiGe fins on a first portion of a Si substrate; forming Si fins on a second portion of the Si substrate; forming STI regions between adjacent SiGe fins and Si fins; forming a cladding layer over top and side surfaces of the SiGe fins and the Si fins and over the STI regions in the second portion of the Si substrate; recessing the STI regions on the first portion of the Si substrate, revealing a bottom portion of the SiGe fins; implanting dopant into the Si substrate below the SiGe fins; and annealing.
Abstract:
A method of forming a metallization layer by ASAP is provided. Embodiments include forming an ULK layer; forming a SAC SiN layer over the ULK layer; forming mandrels directly on the SAC SiN layer; cutting the mandrels; selectively etching the SAC SiN layer across the cut mandrels, forming first trenches; filling the first trenches with a metal oxide; forming a conformal metal oxide layer over the cut mandrels, the metal oxide, and the SAC SiN layer; removing horizontal portions of the conformal metal oxide layer over the cut mandrels and the SAC SiN layer; removing the cut mandrels; removing exposed portions of the SAC SiN layer and etching the underlying ULK layer, forming second trenches; and stripping a remainder of the metal oxide, conformal metal oxide layer, and SAC SiN layer.
Abstract:
A method for eliminating interlayer dielectric (ILD) dishing and controlling gate height uniformity is provided. Embodiments include forming a plurality of polysilicon gates over a substrate, each gate having spacers formed on sides of the polysilicon gates and a nitride cap formed on an upper surface; forming a gapfill material between adjacent polysilicon gates; forming an oxide over the gapfill material between the adjacent polysilicon gates; removing the nitride caps; removing a portion of the oxide between the adjacent polysilicon gates, forming a recess; and forming an ILD cap layer in the recess between the adjacent polysilicon gates.
Abstract:
Embodiments of the present invention provide an improved contact formation process for a finFET. Epitaxial semiconductor regions are formed on the fins. A contact etch stop layer (CESL) is deposited on the epitaxial regions. A nitride-oxide conversion process converts a portion of the nitride CESL into oxide. The oxide-converted portions are removed using a selective etch process, and a fill metal is deposited which is in direct physical contact with the epitaxial regions. Damage, such as gouging, of the epitaxial regions is minimized during this process, resulting in an improved contact for finFETs.
Abstract:
A method of introducing N/P dopants in PMOS and NMOS fins at the SSRW layer without complicated processing and the resulting device are provided. Embodiments include forming a plurality of p-type and n-type fins on a substrate, the plurality of p-type and n-type fins formed with an ISSG or pad oxide layer; performing an n-well implant into the substrate through the ISSG or pad oxide layer; performing a first SRPD on the ISSG or pad oxide layer of the plurality of p-type fins; performing a p-well implant into the substrate through the ISSG or pad oxide layer; performing a second SRPD on the ISSG or pad oxide layer of the plurality of n-type fins; and driving the n-well and p-well implants and the SRPD dopants into a portion of the plurality of p-type and n-type fins.
Abstract:
A method of forming a diffusion barrier film over fins and the resulting device are provided. Embodiments include forming silicon fins over a substrate; depositing a borosilicate glass (BSG) liner cap over a first set of the silicon fins; depositing a phosphosilicate (PSG) liner cap over a second set of the silicon fins; and depositing a silicon oxycarbide (SiOC) diffusion barrier film over the BSG and PSG liner caps.
Abstract:
Embodiments of the present invention provide an improved contact formation process for a finFET. Epitaxial semiconductor regions are formed on the fins. A contact etch stop layer (CESL) is deposited on the epitaxial regions. A nitride-oxide conversion process converts a portion of the nitride CESL into oxide. The oxide-converted portions are removed using a selective etch process, and a fill metal is deposited which is in direct physical contact with the epitaxial regions. Damage, such as gouging, of the epitaxial regions is minimized during this process, resulting in an improved contact for finFETs.
Abstract:
A semiconductor structure includes a bulk silicon substrate and one or more silicon fins coupled to the bulk silicon substrate. Stress-inducing material(s), such as silicon, are epitaxially grown on the fins into naturally diamond-shaped structures using a controlled selective epitaxial growth. The diamond shaped structures are subjected to annealing at about 750° C. to about 850° C. to increase an area of (100) surface orientation by reshaping the shaped structures from the annealing. Additional epitaxy is grown on the increased (100) area. Multiple cycles of increasing the area of (100) surface orientation (e.g., by the annealing) and growing additional epitaxy on the increased area are performed to decrease the width of the shaped structures, increasing the space between them to prevent them from merging, while also increasing their volume.
Abstract:
One method for forming replacement gate structures for NMOS and PMOS transistors includes performing an etching process to remove a sacrificial gate structure for the NMOS and PMOS transistors to thereby define NMOS and PMOS gate cavities, depositing a gate insulation layer in the gate cavities, depositing a first metal layer on the gate insulation layer in the gate cavities, performing at least one process operation to form (1) an NMOS metal silicide material above the first metal layer within the NMOS gate cavity, the NMOS metal silicide material having a first amount of atomic silicon, and (2) a PMOS metal silicide material above the first metal layer within the PMOS gate cavity, the PMOS metal silicide material having a second amount of atomic silicon, and wherein the first and second amounts of atomic silicon are different, and forming gate cap layers within the NMOS and PMOS gate cavities.
Abstract:
Embodiments of the invention provide an improved method and structure for a transistor with reduced DIBL and RON. A sigma cavity is formed in a semiconductor substrate adjacent to a transistor. The sigma cavity is filled with an epitaxially grown semiconductor material that also serves as a stress-inducing region for the purposes of increasing carrier mobility. The epitaxially grown semiconductor material is doped with a reverse doping profile. A lightly doped region lines the interior of the sigma cavity, followed by an undoped region, followed by a heavily doped region. The shape of the lightly doped region is such that it is thicker adjacent to the channel, which reduces RON, and thinner below the channel, which reduces DIBL.