摘要:
The invention relates to devices of the relay type, but using an electrostatic force, rather than a magnetic force, for moving the mobile element. A device according to the invention allows to produce a modification in one or several controlled circuits under the control of a modification or order in an actuating or controlled circuit.The device essentially includes two control electrodes, between which a potential difference may be applied (when desired) using an electrical power source and a control switch, and an electret constituted by an insulating element carrying electrical charges of opposite signs (negative and positive charges), the electret or the algebraic sum of which is different from zero; one of the electrodes is mobile and can occupy at least two positions.The device may be applied to realize electrical, pneumatic, hydraulic or optical switchings.
摘要:
A non-volatile memory arrangement comprising a plurality of cells is disclosed. In one aspect, each cell comprises a memory element and a read selector in series. Further, the memory element is a nano-electro-mechanical switch comprising an anchor, a beam fixed to the anchor, a first and second control gate, for controlling the position of the beam, a first output node against which the beam can be positioned. The cell also comprises a read selector comprising a first selector terminal, a second selector terminal, the first selector terminal connected to the first output node. The first respectively second control gates of switches of a same word are connected together by a first respectively second write word line serving as control gate.
摘要:
A nanoelectromechanical device is provided. The nanoelectromechanical device includes a nanotube, a first contact, and a first actuator. The nanotube includes a first end, the first end supported by a first structure, a second end opposite the first end, and a first portion. The first actuator is configured to apply a first force to the nanotube, the first force causing the nanotube to buckle such that the first portion couples to the first contact.
摘要:
An electromechanical memory element includes a fixed body and a deformable element attached to the fixed body. An actuator causes a deformation of the deformable element from a first position (associated with a first logic state) to a second position (associated with a second logic state) where a mobile element makes contact with a fixed element. A programming circuit then causes a weld to be formed between the mobile element and the fixed element. The memory element is thus capable of associating the first and second positions with two different logic states. The weld may be selectively dissolved to return the deformable element back to the first position.
摘要:
A memory device includes a memory cell that includes a storage node, a first electrode, and a second electrode, the storage node stores an electrical charge, and the first electrode moves to connect to the storage node when the second electrode is energized.
摘要:
Nanoelectromechanical systems are disclosed that utilize vertically grown or placed nanometer-scale beams. The beams may be configured and arranged for use in a variety of applications, such as batteries, generators, transistors, switching assemblies, and sensors. In some generator applications, nanometer-scale beams may be fixed to a base and grown to a desired height. The beams may produce an electric potential as the beams vibrate, and may provide the electric potential to an electrical contact located at a suitable height above the base. In other embodiments, vertical beams may be grown or placed on side-by-side traces, and an electrical connection may be formed between the side-by-side traces when beams on separate traces vibrate and contact one another.
摘要:
A configuration bit array including a hybrid electromechanical and semiconductor memory cell, and circuitry for addressing and controlling read, write, and erase accesses of the memory.
摘要:
A memory chip and method for operating the same are provided. The memory chip includes a number of pads. The method includes inputting a number of first test signals to the pads respectively, wherein the first test signals corresponding to two physically-adjacent pads are complementary; inputting a number of second test signals, respectively successive to the first test signals, to the pads, wherein the first test signal and the second test signal corresponding to each of the pads are complementary; and outputting expected data from the memory chip if the first test signals and the second test signals are successfully received by the memory chip.
摘要:
A storage apparatus including a circuit board, a control circuit element, a terminal module and a storage circuit element is provided. The circuit board includes a first surface, a second surface, a connect part, openings, metal contacts and metal units. The openings pass through the circuit board from the first surface to the second surface and the metal contacts are exposed on the first surface. The terminal module is disposed on the first surface and has elastic terminals and each of the elastic terminals has a first contact part and a second contact part. The first contact parts respectively contact with the metal contacts and the second contact parts respectively pass through the openings to protrude from the second surface. The metal units are disposed on the second surface and located between the openings and the connect part. Accordingly, the volume of the storage apparatus can be reduced.
摘要:
A method of fabricating a nanowire memory device, and a system of controlling nanowire formation used in the same method are provided. In the method of fabricating a nanowire memory device which includes a substrate; an electrode formed on the substrate and insulated from the substrate; and a nanowire having its one end connected with the electrode and formed at a given length, the method comprises: forming an electrode and a dummy electrode to be paired with the electrode on the substrate; forming the nanowire between the electrode and the dummy electrode while measuring a current flowing between the electrode and the dummy electrode, and cutting power applied between the electrode and the dummy electrode when the current measured is a given value; and removing the dummy electrode.