摘要:
The present invention relates to pump systems and engine systems having graphene drums. In embodiments of the invention, the graphene drum can be utilized in the main chambers and/or valves of the pumps and engines.
摘要:
Graphene materials having encapsulated gas cells and methods to make and use same. Alternative electrically conductive and atomically thin materials (such as graphene oxide) can be used alternatively or in addition to the graphene in the graphene encapsulated micro-bubble materials.
摘要:
The present invention relates to graphene windows and methods for making same. One method comprises selecting a high purity metal foil, growing a layer of graphene on a first face of the metal foil, patterning the second face of the graphene-modified foil with a polymer, wherein the second face of the graphene-modified foil has an exposed region and etching the second face of the graphene-modified foil in the exposed region until exposing the first layer of graphene.
摘要:
The present invention relates to pump systems and engine systems having graphene drums. In embodiments of the invention, the graphene drum can be utilized in the main chambers and/or valves of the pumps and engines.
摘要:
The present invention relates to thin membranes (such as graphene windows) and methods of aligned transfer of such thin membranes to substrates. The present invention further relates to devices that include such thin membranes.
摘要:
Nanoelectromechanical systems are disclosed that utilize vertically grown or placed nanometer-scale beams. The beams may be configured and arranged for use in a variety of applications, such as batteries, generators, transistors, switching assemblies, and sensors. In some generator applications, nanometer-scale beams may be fixed to a base and grown to a desired height. The beams may produce an electric potential as the beams vibrate, and may provide the electric potential to an electrical contact located at a suitable height above the base. In other embodiments, vertical beams may be grown or placed on side-by-side traces, and an electrical connection may be formed between the side-by-side traces when beams on separate traces vibrate and contact one another.
摘要:
Electromechanical systems utilizing suspended conducting nanometer-scale beams are provided and may be used in applications, such as, motors, generators, pumps, fans, compressors, propulsion systems, transmitters, receivers, heat engines, heat pumps, magnetic field sensors, kinetic energy storage devices and accelerometers. Such nanometer-scale beams may be provided as, for example, single molecules, single crystal filaments, or nanotubes. When suspended by both ends, these nanometer-scale beams may be caused to rotate about their line of suspension, similar to the motion of a jumprope (or a rotating whip), via electromagnetic or electrostatic forces.This motion may be used, for example, to accelerate molecules of a working substance in a preferred direction, generate electricity from the motion of a working substance molecules, or generate electromagnetic signals. Means of transmitting and controlling currents through these beams are also described.
摘要:
An automated fabrication system is provided that utilizes electromagnetism to manipulate and/or sense the location of raw materials on a platform. Tools located around said platform may be utilized to fabricate a predetermined structure out of the raw materials. Tags that can be electromagnetically manipulated and sensed may be placed on passive raw materials. Structures fabricated from such a system may be, for example, a roof truss. Additionally, the fabrication system may be mobilized by way of a truck such that structures may be built on-site.
摘要:
Nanoelectromechanical systems are disclosed that utilize vertically grown or placed nanometer-scale beams. The beams may be configured and arranged for use in a variety of applications, such as batteries, generators, transistors, switching assemblies, and sensors. In some generator applications, nanometer-scale beams may be fixed to a base and grown to a desired height. The beams may produce an electric potential as the beams vibrate, and may provide the electric potential to an electrical contact located at a suitable height above the base. In other embodiments, vertical beams may be grown or placed on side-by-side traces, and an electrical connection may be formed between the side-by-side traces when beams on separate traces vibrate and contact one another.
摘要:
It is an object of the present invention to provide NEMS that utilize electrostatic and electromagnetic forces to operate. In one nanoelectrostatic embodiment, a nanometer-scale beam is suspended in an electric field. Electrically charged rails are placed around the beam. When a beam contacts a rail, the beam is forced to move through the electric field in a particular direction. In one nanoelectromagnetic embodiment, a nanometer-scale beam is suspended in a magnetic field. A rail is located in the vicinity of the beam and opposite charges are applied to the rail and beam. In this manner, a current may flow between the beam and rail when the beam and rail contact each other. This current may interact with the magnetic field to move the beam in a particular direction.