Abstract:
A multi-positional valve is used to control the destination of gas flows from multiple gas sources. In one valve position the gases flow to an isolated vacuum system where the flow rate and mixture can be adjusted prior to introduction into a sample vacuum chamber. In another valve position the pre-mixed gases flow from the isolated vacuum chamber and through a needle into the sample vacuum chamber.
Abstract:
The objective of the present invention is to maintain the surrounding of a sample at atmospheric pressure and efficiently detect secondary electrons. In a sample chamber of a charged particle device, a sample holder (4) has: a gas introduction pipe and a gas evacuation pipe for controlling the vicinity of a sample (20) to be an atmospheric pressure environment; a charged particle passage hole (18) and a micro-orifice (18) enabling detection of secondary electrons (15) emitted from the sample (20), co-located above the sample (20); and a charged particle passage hole (19) with a hole diameter larger than the micro-orifice (18) above the sample (20) so as to be capable of actively evacuating gas during gas introduction.
Abstract:
A high brightness ion source with a gas chamber includes multiple channels, wherein the multiple channels each have a different gas. An electron beam is passed through one of the channels to provide ions of a certain species for processing a sample. The ion species can be rapidly changed by directing the electrons into another channel with a different gas species and processing a sample with ions of a second species. Deflection plates are used to align the electron beam into the gas chamber, thereby allowing the gas species in the focused ion beam to be switched quickly.
Abstract:
A novel composition, system and method thereof for improving beam current during boron ion implantation are provided. The boron ion implant process involves utilizing B2H6, BF3 and H2 at specific ranges of concentrations. The B2H6 is selected to have an ionization cross-section higher than that of the BF3 at an operating arc voltage of an ion source utilized during generation and implantation of active hydrogen ions species. The hydrogen allows higher levels of B2H6 to be introduced into the BF3 without reduction in F ion scavenging. The active boron ions produce an improved beam current characterized by maintaining or increasing the beam current level without incurring degradation of the ion source when compared to a beam current generated from conventional boron precursor materials.
Abstract:
A novel composition, system and method for improving beam current during boron ion implantation are provided. In a preferred aspect, the boron ion implant process involves utilizing B2H6, 11BF3 and H2 at specific ranges of concentrations. The B2H6 is selected to have an ionization cross-section higher than that of the BF3 at an operating arc voltage of an ion source utilized during generation and implantation of active hydrogen ions species. The hydrogen allows higher levels of B2H6 to be introduced into the BF3 without reduction in F ion scavenging. The active boron ions produce an improved beam current characterized by maintaining or increasing the beam current level without incurring degradation of the ion source when compared to a beam current generated from conventional boron precursor materials.
Abstract:
A cold trap is provided to reduce contamination gases that react with the beam during operations that use a process gas. The cold trap is set to a temperature that condenses the contamination gas but does not condense the process gas. Cold traps may be used in the sample chamber and in the gas line.
Abstract:
An ozone supplying apparatus according to an embodiment of the present invention is an ozone gas supplying apparatus which supplies an ozone gas to a vacuum apparatus. The ozone supplying apparatus includes an ozone generator configured to generate the ozone gas, a first flow controller configured to control a flow rate of the ozone gas generated by the ozone generator, a second flow controller configured to control a flow rate of the ozone gas supplied to the vacuum apparatus, and a main pipe provided on a secondary side of the first flow controller and on a primary side of the second flow controller, with the ozone gas being introduced into the main pipe at such a flow rate that an internal pressure of the main pipe is controlled to be lower than atmospheric pressure by the first flow controller.
Abstract:
The objective of the present invention is to maintain the surrounding of a sample at atmospheric pressure and efficiently detect secondary electrons. In a sample chamber of a charged particle device, a sample holder (4) has: a gas introduction pipe and a gas evacuation pipe for controlling the vicinity of a sample (20) to be an atmospheric pressure environment; a charged particle passage hole (18) and a micro-orifice (18) enabling detection of secondary electrons (15) emitted from the sample (20), co-located above the sample (20); and a charged particle passage hole (19) with a hole diameter larger than the micro-orifice (18) above the sample (20) so as to be capable of actively evacuating gas during gas introduction.
Abstract:
A multi-positional valve is used to control the destination of gas flows from multiple gas sources. In one valve position the gases flow to an isolated vacuum system where the flow rate and mixture can be adjusted prior to introduction into a sample vacuum chamber. In another valve position the pre-mixed gases flow from the isolated vacuum chamber and through a needle into the sample vacuum chamber.
Abstract:
A nozzle assembly used for performing gas cluster ion beam (GCIB) etch processing of various materials is described. In particular, the nozzle assembly includes two or more conical nozzles that are aligned such that they are both used to generate the same GCIB. The first conical nozzle may include the throat that initially forms the GCIB and the second nozzle may form a larger conical cavity that may be appended to the first conical nozzle. A transition region may be disposed between the two conical nozzles that may substantially cylindrical and slightly larger than the largest diameter of the first conical nozzle.