Abstract:
A wiring structure includes a first insulation layer, a plurality of wiring patterns, a protection layer pattern and a second insulation layer. The first insulation layer may be formed on a substrate. A plurality of wiring patterns may be formed on the first insulation layer, and each of the wiring patterns may include a metal layer pattern and a barrier layer pattern covering a sidewall and a bottom surface of the metal layer pattern. The protection layer pattern may cover a top surface of each of the wiring patterns and including a material having a high reactivity with respect to oxygen. The protection layer pattern may cover a top surface of each of the wiring patterns and including a material having a high reactivity with respect to oxygen.
Abstract:
Methods of forming a wiring structure are provided including forming an insulating interlayer on a substrate and forming a sacrificial layer on the insulating interlayer. The sacrificial layer is partially removed to define a plurality of openings. Wiring patterns are formed in the openings. The sacrificial layer is transformed into a modified sacrificial layer by a plasma treatment. The modified sacrificial layer is removed by a wet etching process. An insulation layer covering the wiring patterns is formed on the insulating interlayer. The insulation layer defines an air gap therein between neighboring wiring patterns.
Abstract:
An integrated circuit device includes a metal film and a complex capping layer covering a top surface of the metal film. The metal film includes a first metal, and penetrates at least a portion of an insulating film formed over a substrate. The complex capping layer includes a conductive alloy capping layer covering the top surface of the metal film, and an insulating capping layer covering a top surface of the conductive alloy capping layer and a top surface of the insulating film. The conductive alloy capping layer includes a semiconductor element and a second metal different from the first metal. The insulating capping layer includes a third metal.
Abstract:
A method of manufacturing a semiconductor device is disclosed. The method includes forming a first insulting layer on a substrate, forming a first conductor pattern in the first insulating layer, forming a second insulating layer on the first insulating layer, and forming a second wiring pattern and a contact via in the second insulating layer, wherein a top surface of the first insulating layer is higher than a top surface of the first conductor pattern.
Abstract:
A method of forming a semiconductor device can include forming an insulation layer using a material having a composition selected to provide resistance to subsequent etching process. The composition of the material can be changed to reduce the resistance of the material to the subsequent etching process at a predetermined level in the insulation layer. The subsequent etching process can be performed on the insulation layer to remove an upper portion of the insulation layer above the predetermined level and leave a lower portion of the insulation layer below the predetermined level between adjacent conductive patterns extending through the lower portion of the insulation layer. A low-k dielectric material can be formed on the lower portion of the insulation layer between the adjacent conductive patterns to replace the upper portion of the insulation layer above the predetermined level.
Abstract:
A semiconductor device includes an insulating interlayer on a first region of a substrate. The insulating interlayer has a recess therein and includes a low-k material having porosity. A damage curing layer is formed on an inner surface of the recess. A barrier pattern is formed on the damage curing layer. A copper structure fills the recess and is disposed on the barrier pattern. The copper structure includes a copper pattern and a copper-manganese capping pattern covering a surface of the copper pattern. A diffusion of metal in a wiring structure of the semiconductor device may be prevented, and thus a resistance of the wiring structure may decrease.
Abstract:
A semiconductor device includes a substrate, a conductive pattern, a side spacer, and an air gap. The substrate includes an interlayer insulating layer and a trench penetrating the interlayer insulating layer. The conductive pattern is disposed within the trench of the substrate. The side spacer is disposed within the trench. The side spacer covers an upper side surface of the conductive pattern. The air gap is disposed within the trench. The air gap is bounded by a sidewall of the trench, the side spacer, and a lower side surface of the conductive pattern. A level of a bottom surface of the conductive pattern is lower than a level of bottom surfaces of the side spacer.
Abstract:
Semiconductor devices may include a diffusion prevention insulation pattern, a plurality of conductive patterns, a barrier layer, and an insulating interlayer. The diffusion prevention insulation pattern may be formed on a substrate, and may include a plurality of protrusions protruding upwardly therefrom. Each of the conductive patterns may be formed on each of the protrusions of the diffusion prevention insulation pattern, and may have a sidewall inclined by an angle in a range of about 80 degrees to about 135 degrees to a top surface of the substrate. The barrier layer may cover a top surface and the sidewall of each if the conductive patterns. The insulating interlayer may be formed on the diffusion prevention insulation pattern and the barrier layer, and may have an air gap between neighboring ones of the conductive patterns.
Abstract:
Methods of forming a dielectric layer are provided. The methods may include introducing oxygen radicals and organic silicon precursors into a chamber to form a preliminary dielectric layer on a substrate. Each of the organic silicon precursors may include a carbon bridge and a porogen such that the preliminary dielectric layer may include carbon bridges and porogens. The methods may also include removing at least some of the porogens from the preliminary dielectric layer to form a porous dielectric layer including the carbon bridges.
Abstract:
A wiring structure includes a first insulation layer, a plurality of wiring patterns, a protection layer pattern and a second insulation layer. The first insulation layer may be formed on a substrate. A plurality of wiring patterns may be formed on the first insulation layer, and each of the wiring patterns may include a metal layer pattern and a barrier layer pattern covering a sidewall and a bottom surface of the metal layer pattern. The protection layer pattern may cover a top surface of each of the wiring patterns and including a material having a high reactivity with respect to oxygen. The protection layer pattern may cover a top surface of each of the wiring patterns and including a material having a high reactivity with respect to oxygen.