Abstract:
An apparatus for wired and wireless charging of an electronic device are provided. The electronic device includes a housing, a display on a surface of the housing, a battery mounted in the housing, a circuit electrically connected with the battery, a conductive pattern positioned in the housing, electrically connected with the circuit, and configured to wirelessly transmit power to an external device, a connector on another surface of the housing and electrically connected with the circuit, a memory, and a processor electrically connected with the display, the battery, the circuit, the connector, and/or the memory. The circuit is configured to electrically connect the battery with the conductive pattern to wirelessly transmit power to the external device and electrically connect the battery with the connector to transmit power to the external device by wire, simultaneously or selectively, with wirelessly transmitting power to the external device.
Abstract:
Provided are a battery charging method and an electronic device. The electronic device includes a connector that includes a first terminal to which a voltage is applied by an external charger and a second terminal for transmitting and receiving data, and a first charging circuit configured to charge a battery of the electronic device by using the voltage applied to the first terminal. The first charging circuit may include a communication circuit configured to transmit information related to the battery through the second terminal, a voltage converter configured to convert a voltage supplied to the battery and a first controller circuit configured to obtain first information regarding a voltage of the battery, control the communication circuit to transmit the first information to a charger connected with the connector, and control the voltage converter to charge the battery using a voltage adjusted based on the first information by the charger, if the adjusted voltage is applied to the first terminal.
Abstract:
A method of performing a charging function by using different types of energy sources and an electronic device thereof are provided. The electronic device includes different types of circuits configured to acquire different types of energy sources, and a processor configured to determine an energy source for charging among the different types of energy sources based on respective current values for the different types of energy sources, and control the determined energy source for charging so as to be used in battery charging of the electronic device or in a system operation of the electronic device.
Abstract:
A semiconductor memory device may include a cell array comprising a plurality of memory cells, each memory cell connected to a word line and a bit line, the cell array divided into a plurality of blocks, each block including a plurality of word lines, the plurality of blocks including at least a first defective block; a nonvolatile storage circuit configured to store address information of the first defective block, and to output the address information to an external device; and a fuse circuit configured to cut off an activation of word lines of the first defective block.
Abstract:
A use time managing method of a semiconductor device may include (1) measuring an amount of accumulated operation time of the semiconductor device and when the amount is reached to a predetermined value, generating a unit storage activation signal; (2) repeating step (1) to generate one or more additional unit storage activation signals, thereby generating a plurality of unit storage activation signals, wherein the predetermined values are different for each repeating step; (3) storing data indicating each occurrence of generating the unit storage activation signals; and (4) detecting use time of the semiconductor device based on the cumulatively stored data.
Abstract:
A memory module includes a plurality of memory devices and a buffer chip. The buffer chip manages the memory devices. The buffer chip includes a refresh control circuit that groups a plurality of memory cell rows of the memory devices into a plurality of groups according to a data retention time of tire memory cell rows. The buffer chip selectively refreshes each of the plurality of groups in each of a plurality of refresh time regions that are periodically repeated and applies respective refresh periods to the plurality of groups, respectively.
Abstract:
A semiconductor memory device includes a memory cell array, sub word-line drivers and power selection switches. The memory cell array includes memory cell rows coupled to word lines. The sub word line drivers are coupled to the word lines. The power selection switches are coupled to the sub word-line drivers. Each power selection switch controls a deactivation voltage level of a first word-line activated from the word-lines and an off-voltage level of a second word line adjacent to the first word line so that the deactivation voltage level and the off-voltage level have at least one of a ground voltage, a first negative voltage and a second negative voltage. The ground voltage, the first negative voltage and the second negative voltage have different voltage levels from each other.
Abstract:
A memory module may include m memory devices. Each of the m memory devices may be divided into n regions each region including a plurality of rows corresponding to row addresses, where m and n are integers equal to or greater than 2. An address detector included in each of the m memory devices, wherein for each of the address detectors, the address detector may be configured to count a number of accesses to a particular row address included in one region of each of the m memory devices during a predetermined time period, and be configured to output a detect signal when the number of the counted accesses reaches a reference value. Each of the max-count address generators may be configured to count a number of accesses for a set of row addresses different from the sets of row addresses for which the other max-count address generators count accesses.
Abstract:
A semiconductor memory device includes a memory cell array, a mode register set and a test circuit. The memory cell array includes a plurality of wordlines, a plurality of bitlines, and a plurality of spin-transfer torque magneto-resistive random access memory (STT-MRAM) cells, and each STT-MRAM cell disposed in a cross area of each wordline and bitline, and the STT-MRAM cell includes a magnetic tunnel junction (MTJ) element and a cell transistor. A gate of the cell transistor is coupled to a wordline, a first electrode of the cell transistor is coupled to a bitline via the MTJ element, and a second electrode of the cell transistor is coupled to a source line. The mode register set is configured to set a test mode, and the test circuit is configured to perform a test operation by using the mode register set.
Abstract:
A memory device may be provided which includes a memory cell array including a plurality of sub arrays each sub array having a plurality of memory cells connected to bit lines; an address buffer configured to receive a row address and a column address; and a column decoder configured to receive the column address from the address buffer and, for each of the sub arrays, to select a column selection line corresponding to the column address, from among a plurality of column selection lines, based on different offset values applied to the sub arrays, respectively. The selected column selection lines correspond to bit lines having different physical locations, respectively, according to the different offset values.