Abstract:
Monolithic three dimensional (3D) integrated circuits (ICs) (3DICs) with vertical memory components are disclosed. A 3D memory crossbar architecture with tight-pitched vertical monolithic intertier vias (MIVs) for inter-block routing and multiplexers at each tier for block access is used to shorten overall conductor length and reduce resistive-capacitive (RC) delay. Elimination of such long crossbars reduces the RC delay of the crossbar and generally improves performance and speed. Further, elimination of the long horizontal crossbars makes conductor routing easier. The MIVs, with their small run-length, can work without the need for repeaters (unlike the long crossbars), and control logic may be used to configure the memory banks based on use.
Abstract:
The disclosed embodiments are directed to systems and method for floorplanning an integrated circuit design using a mix of 2D and 3D blocks that provide a significant improvement over existing 3D design methodologies. The disclosed embodiments provide better floorplan solutions that further minimize wirelength and improve the overall power/performance envelope of the designs. The disclosed methodology may be used to construct new 3D IP blocks to be used in designs that are built using monolithic 3D integration technology.
Abstract:
A hard macro includes a periphery defining a hard macro area and having a top and a bottom and a hard macro thickness from the top to the bottom, the hard macro including a plurality of vias extending through the hard macro thickness from the top to the bottom. Also an integrated circuit having a top layer, a bottom layer and at least one middle layer, the top layer including a top layer conductive trace, the middle layer including a hard macro and the bottom layer including a bottom layer conductive trace, wherein the top layer conductive trace is connected to the bottom layer conductive trace by a via extending through the hard macro.
Abstract:
A hard macro includes a periphery defining a hard macro area and having a top and a bottom and a hard macro thickness from the top to the bottom, the hard macro including a plurality of vias extending through the hard macro thickness from the top to the bottom. Also an integrated circuit having a top layer, a bottom layer and at least one middle layer, the top layer including a top layer conductive trace, the middle layer including a hard macro and the bottom layer including a bottom layer conductive trace, wherein the top layer conductive trace is connected to the bottom layer conductive trace by a via extending through the hard macro.
Abstract:
Power distribution networks in a three-dimensional (3D) integrated circuit (IC) (3DIC) are disclosed. In one aspect, a voltage drop within a power distribution network in a 3DIC is reduced to reduce unnecessary power dissipation. In a first aspect, interconnect layers devoted to distribution of power within a given tier of the 3DIC are provided with an increased thickness such that a resistance of such interconnect layers is reduced relative to previously used interconnect layers and also reduced relative to other interconnect layers. Further voltage drop reductions may also be realized by placement of vias used to interconnect different tiers, and particularly, those vias used to interconnect the thickened interconnect layers devoted to the distribution of power. That is, the number, position, and/or arrangement of the vias may be controlled in the 3DIC to reduce the voltage drop.
Abstract:
Multi-processor core three-dimensional (3D) integrated circuits (ICs) (3DICs) and related methods are disclosed. In aspects disclosed herein, ICs are provided that include a central processing unit (CPU) having multiple processor cores (“cores”) to improve performance. To further improve CPU performance, the multiple cores can also be designed to communicate with each other to offload workloads and/or share resources for parallel processing, but at a communication overhead associated with passing data through interconnects which have an associated latency. To mitigate this communication overhead inefficiency, aspects disclosed herein provide the CPU with its multiple cores in a 3DIC. Because 3DICs can overlap different IC tiers and/or align similar components in the same IC tier, the cores can be designed and located between or within different IC tiers in a 3DIC to reduce communication distance associated with processor core communication to share workload and/or resources, thus improving performance of the multi-processor CPU design.
Abstract:
Methods and apparatus for implementing a synthetic jet to cool a device are provided. Examples of the techniques keep a device case cool enough to be hand-held, while allowing a higher temperature of a circuit component located in the case, to maximize circuit performance. In an example, provided is a mobile device including a synthetic jet configured to transfer heat within the mobile device. The synthetic jet can be embedded in a circuit board inside the mobile device such that the circuit board defines at least a portion of a chamber of the synthetic jet and defines an orifice of the synthetic jet. The device case can define at least one fluid channel inside the mobile device. Also, the circuit board can define a synthetic jet outlet configured to direct a fluid at the at least one fluid channel. Also provided are methods for controlling a synthetic jet.
Abstract:
Monolithic three dimensional (3D) integrated circuits (ICs) (3DICs) with vertical memory components are disclosed. A 3D memory crossbar architecture with tight-pitched vertical monolithic intertier vias (MIVs) for inter-block routing and multiplexers at each tier for block access is used to shorten overall conductor length and reduce resistive-capacitive (RC) delay. Elimination of such long crossbars reduces the RC delay of the crossbar and generally improves performance and speed. Further, elimination of the long horizontal crossbars makes conductor routing easier. The MIVs, with their small run-length, can work without the need for repeaters (unlike the long crossbars), and control logic may be used to configure the memory banks based on use.
Abstract:
Placement of Monolithic Inter-tier Vias (MIVs) within monolithic three dimensional (3D) integrated circuits (ICs) (3DICs) using clustering to increase usable whitespace is disclosed. In one embodiment, a method of placing MIVs in a monolithic 3DIC using clustering is provided. The method comprises determining if any MIV placement clusters are included within a plurality of initial MIV placements of a plurality of MIVs within an initial 3DIC layout plan. The method further comprises aligning each MIV of the plurality of MIVs within each MIV placement cluster in the initial 3DIC layout plan at a final MIV placement for each MIV placement cluster to provide a clustered 3DIC layout plan.
Abstract:
Exemplary embodiments of the invention are directed to systems and method for designing a clock distribution network for an integrated circuit. The embodiments identify critical sources of clock skew, tightly control the timing of the clock and build that timing into the overall clock distribution network and integrated circuit design. The disclosed embodiments separate the clock distribution network (CDN), i.e., clock generation circuitry, wiring, buffering and registers, from the rest of the logic to improve the clock tree design and reduce the area footprint. In one embodiment, the CDN is separated to a separate tier of a 3D integrated circuit, and the CDN is connected to the logic tier(s) via high-density inter-tier vias. The embodiments are particularly advantageous for implementation with monolithic 3D integrated circuits.