Abstract:
A TMR (tunneling magnetoresistive) read sensor is formed in which a portion of the sensor stack containing the ferromagnetic free layer and the tunneling barrier layer is patterned to define a narrow trackwidth, but a synthetic antiferromagnetic pinning/pinned layer is left substantially unpatterned and extends in substantially as-deposited form beyond the lateral edges bounding the patterned portion. The narrow trackwidth of the patterned portion permits high resolution for densely recorded data. The larger pinning/pinned layer significantly improves magnetic stability and reduces thermal noise, while the method of formation eliminates possible ion beam etch (IBE) or reactive ion etch (RIE) damage to the edges of the pinning/pinned layer.
Abstract:
The blocking temperature of the AFM layer in a TMR sensor has been raised by inserting a magnetic seed layer between the AFM layer and the bottom shield. This gives the device improved thermal stability, including improved SNR and BER.
Abstract:
A high performance TMR sensor is fabricated by employing a free layer comprised of CoNiFeB or CoNiFeBM where M is V, Ti, Zr, Nb, Hf, Ta, or Mo and the M content in the alloy is
Abstract:
A spin transfer oscillator with a seed/SIL/spacer/FGL/capping configuration is disclosed with a composite seed layer made of Ta and a metal layer having a fcc(111) or hcp(001) texture to enhance perpendicular magnetic anisotropy (PMA) in an overlying (A1/A2)X laminated spin injection layer (SIL). Field generation layer (FGL) is made of a high Bs material such FeCo. Alternatively, the STO has a seed/FGL/spacer/SIL/capping configuration. The SIL may include a FeCo layer that is exchanged coupled with the (A1/A2)X laminate (x is 5 to 50) to improve robustness. The FGL may include an (A1/A2)Y laminate (y=5 to 30) exchange coupled with the high Bs layer to enable easier oscillations. A1 may be one of Co, CoFe, or CoFeR where R is a metal, and A2 is one of Ni, NiCo, or NiFe. The STO may be formed between a main pole and trailing shield in a write head.
Abstract:
A TMR stack or a GMR stack, ultimately formed into a sensor or MRAM element, include insertion layers of Fe or iron rich layers of FeX in its ferromagnetic free layer and/or the AP1 layer of its SyAP pinned layer. X is a non-magnetic, metallic element (or elements) chosen from Ta, Hf, V, Co, Mo, Zr, Nb or Ti whose total atom percent is less than 50%. The insertion layers are between 1 and 10 angstroms in thickness, with between 2 and 5 angstroms being preferred and, in the TMR stack, they are inserted adjacent to the interfaces between a tunneling barrier layer and the ferromagnetic free layer or the tunneling barrier layer and the AP1 layer of the SyAP pinned layer in the TMR stack. The insertion layers constrain interdiffusion of B and Ni from CoFeB and NiFe layers and block NiFe crystalline growth.
Abstract:
The performance of an MR device has been improved by inserting one or more Magneto-Resistance Enhancing Layers (MRELs) into approximately the center of one or more of the magnetic layers such as an inner pinned (AP1) layer, spin injection layer (SIL), field generation layer (FGL), and a free layer. An MREL is a layer of a low band gap, high electron mobility semiconductor such as ZnO or a semimetal such as Bi. The MREL may further comprise a first conductive layer that contacts a bottom surface of the semiconductor or semimetal layer, and a second conductive layer that contacts a top surface of the semiconductor or semimetal layer.
Abstract:
A spin transfer oscillator with a seed/SIL/spacer/FGL/capping configuration is disclosed with a composite seed layer made of Ta and a metal layer having a fcc(111) or hcp(001) texture to enhance perpendicular magnetic anisotropy (PMA) in an overlying (A1/A2)X laminated spin injection layer (SIL). Field generation layer (FGL) is made of a high Bs material such FeCo. Alternatively, the STO has a seed/FGL/spacer/SIL/capping configuration. The SIL may include a FeCo layer that is exchanged coupled with the (A1/A2)X laminate (x is 5 to 50) to improve robustness. The FGL may include an (A1/A2)Y laminate (y=5 to 30) exchange coupled with the high Bs layer to enable easier oscillations. A1 may be one of Co, CoFe, or CoFeR where R is a metal, and A2 is one of Ni, NiCo, or NiFe. The STO may be formed between a main pole and trailing shield in a write head.
Abstract:
A process for manufacturing a TMR sensor is disclosed wherein the blocking temperature of the AFM layer in the TMR sensor has been raised by inserting a magnetic seed layer between the AFM layer and the bottom shield. This gives the device improved thermal stability, including improved SNR and BER.
Abstract:
A read head structure is disclosed with a dual piece heat sink layer having a front piece formed over a front portion of a dynamic flying height (DFH) element and a back piece above a back portion of the DFH element. A first (S1) shield is formed on the front piece and between the front piece and air bearing surface (ABS). Front and back pieces are separated by an insulator gap. The front piece is used to help control read gap protrusion. As a result, a bottom portion of the S1 shield protrudes to a greater extent than a top portion adjacent to the sensor thereby protecting the sensor from unwanted contact with the magnetic media. The dual piece heat sink layer also enables an improved Figure of Merit in terms of temperature rise in the reader per unit of actuation (nm) delivered by the DFH element.
Abstract:
A perpendicular magnetic recording (PMR) head is fabricated with a pole tip shielded laterally by a graded side shield that is conformal to the shape of the pole tip at an upper portion of the shield but not conformal to the pole tip at a lower portion. The shield includes a trailing shield, that is conformal to the trailing edge of the pole tip and may include a leading edge shield that magnetically connects two bottom ends of the graded side shield.