Abstract:
A TMR (tunneling magnetoresistive) read sensor is formed in which a portion of the sensor stack containing the ferromagnetic free layer and the tunneling barrier layer is patterned to define a narrow trackwidth, but a synthetic antiferromagnetic pinning/pinned layer is left substantially unpatterned and extends in substantially as-deposited form beyond the lateral edges bounding the patterned portion. The narrow trackwidth of the patterned portion permits high resolution for densely recorded data. The larger pinning/pinned layer significantly improves magnetic stability and reduces thermal noise, while the method of formation eliminates possible ion beam etch (IBE) or reactive ion etch (RIE) damage to the edges of the pinning/pinned layer.
Abstract:
A composite hard mask is disclosed. In some embodiments, a first sacrificial hard mask layer comprising an amorphous carbon or silicon nitride and a second sacrificial hard mask layer comprising a silicon nitride, silicon oxide, metal, metal oxide, or metal nitride, wherein the first and second sacrificial hard mask layers are not made of the same material.
Abstract:
A TMR (tunneling magnetoresistive) read sensor is formed in which a portion of the sensor stack containing the ferromagnetic free layer and the tunneling barrier layer is patterned to define a narrow trackwidth, but a synthetic antiferromagnetic pinning/pinned layer is left substantially unpatterned and extends in substantially as-deposited form beyond the lateral edges bounding the patterned portion. The narrow trackwidth of the patterned portion permits high resolution for densely recorded data. The larger pinning/pinned layer significantly improves magnetic stability and reduces thermal noise, while the method of formation eliminates possible ion beam etch (IBE) or reactive ion etch (RIE) damage to the edges of the pinning/pinned layer.