Abstract:
A MR sensor is disclosed with an antiferromagnetic (AFM) layer recessed behind a bottom shield to reduce reader shield spacing and improve pin related noise. Above the AFM layer is an AP2/AFM coupling layer/AP1 stack that extends from an air bearing surface to the MR sensor backside. The AP2 layer is pinned by the AFM layer, and the AP1 layer serves as a reference layer to an overlying free layer during a read operation. The AP1 and AP2 layers have improved resistance to magnetization flipping because back portions thereof have a full cross-track width “w” between MR sensor sides thereby enabling greater pinning strength from the AFM layer. Front portions of the AP1/AP2 layers lie under the free layer and have a track width less than “w”. The bottom shield may have an anti-ferromagnetic coupling structure. A process flow is provided for fabricating the MR sensor.
Abstract:
A TMR (tunneling magnetoresistive) read sensor is formed in which a portion of the sensor stack containing the ferromagnetic free layer and the tunneling barrier layer is patterned to define a narrow trackwidth, but a synthetic antiferromagnetic pinning/pinned layer is left substantially unpatterned and extends in substantially as-deposited form beyond the lateral edges bounding the patterned portion. The narrow trackwidth of the patterned portion permits high resolution for densely recorded data. The larger pinning/pinned layer significantly improves magnetic stability and reduces thermal noise, while the method of formation eliminates possible ion beam etch (IBE) or reactive ion etch (RIE) damage to the edges of the pinning/pinned layer.
Abstract:
A composite hard mask is disclosed. In some embodiments, a first sacrificial hard mask layer comprising an amorphous carbon or silicon nitride and a second sacrificial hard mask layer comprising a silicon nitride, silicon oxide, metal, metal oxide, or metal nitride, wherein the first and second sacrificial hard mask layers are not made of the same material.
Abstract:
A process flow is disclosed for forming a MR sensor having an antiferromagnetic (AFM) layer recessed behind a bottom shield to reduce reader shield spacing and improve pin related noise. An AP2/AFM coupling layer/AP1 stack that extends from an air bearing surface to the MR sensor backside is formed above the AFM layer. The AP2 layer is pinned by the AFM layer, and the AP1 layer serves as a reference layer to an overlying free layer during a read operation. The AP1 and AP2 layers have improved resistance to magnetization flipping because back portions thereof have a full cross-track width “w” between MR sensor sides thereby enabling greater pinning strength from the AFM layer. Front portions of the AP1/AP2 layers lie under the free layer and have a track width less than “w”. The bottom shield may have an anti-ferromagnetic coupling structure.
Abstract:
Methods of critical dimension (CD) uniformity control for magnetic head devices are disclosed. In some embodiments, a method can include providing a film stack, the film stack including a substrate, a magnetoresistive (MR) sensor layer, and a hard mask layer, patterning the hard mask layer using a first mask that defines critical shape patterns other than the CD, forming a mandrel pattern using a second mask that defines the CD, and forming a sidewall spacer pattern on sidewalls of the mandrel pattern, and removing the mandrel pattern.
Abstract:
Methods of critical dimension (CD) uniformity control for magnetic head devices are disclosed. In some embodiments, a method can include providing a film stack, the film stack including a substrate, a magnetoresistive (MR) sensor layer, and a hard mask layer, patterning the hard mask layer using a first mask that defines critical shape patterns other than the CD, forming a mandrel pattern using a second mask that defines the CD, and forming a sidewall spacer pattern on sidewalls of the mandrel pattern, and removing the mandrel pattern.
Abstract:
A MR sensor is disclosed with an antiferromagnetic (AFM) layer recessed behind a first stack of layers including a free layer and non-magnetic spacer to reduce reader shield spacing and enable increased areal density. The AFM layer may be formed on a first pinned layer in the first stack that is partially embedded in a second pinned layer having a front portion at an air bearing surface (ABS) to improve pinning strength and avoid a morphology effect. In another embodiment, the AFM layer is embedded in a bottom shield and surrounds the sidewalls and back side of an overlying free layer in the sensor stack to reduce reader shield spacing. Pinning strength is improved because of increased contact between the AFM layer and a pinned layer. The free layer is aligned above a bottom shield center section.
Abstract:
Methods of critical dimension (CD) uniformity control for magnetic head devices are disclosed. In some embodiments, a method can include providing a film stack, the film stack including a substrate, a magnetoresistive (MR) sensor layer, and a hard mask layer, patterning the hard mask layer using a first mask that defines critical shape patterns other than the CD, forming a mandrel pattern using a second mask that defines the CD, and forming a sidewall spacer pattern on sidewalls of the mandrel pattern, and removing the mandrel pattern.
Abstract:
A seed layer stack with a smooth top surface having a peak to peak film thickness variation of about 0.5 nm is formed by sputter depositing a second seed layer on a first seed layer that is Mg, MgN, or an alloy thereof where the second seed layer has a bond energy substantially greater than that of the first seed layer. The second seed layer may be Ta or NiCr. In some embodiments, an uppermost seed layer that is one or both of Ru and Cu is deposited on the second seed layer. Higher coercivity (Hc) and perpendicular magnetic anisotropy (Hk) is observed in an overlying ferromagnetic layer than when a prior art seed layer stack is employed. The first seed layer has a thickness from 2 to 20 Angstroms and has a resputtering rate about 2 to 40 times that of the second seed layer.