Abstract:
An aspect of the present disclosure may include a gas lock cover secured to a nozzle holder and provided downstream of a nozzle. The gas lock cover may cover a periphery of an exit of the nozzle and be structured to guide gas supplied from a gas supply unit. The gas lock cover may include a hollow cylindrical part provided downstream of the nozzle and having an exit opening for outputting droplets that are outputted from the nozzle and pass through an internal cavity of the cylindrical part. The gas lock cover may include a channel for transmitting the gas supplied from the gas supply unit, the channel being structured to orient a flow of the transmitted gas so as to flow to the exit opening of the cylindrical part through the internal cavity of the cylindrical part.
Abstract:
A gas laser apparatus may include: a laser chamber connected through a first control valve to a first laser gas supply source that supplies a first laser gas containing a halogen gas and connected through a second control valve to a second laser gas supply source that supplies a second laser gas having a lower halogen gas concentration than the first laser gas; a purification column that removes at least a part of the halogen gas and a halogen compound from at least a part of a gas exhausted from the laser chamber; a booster pump, connected through a third control valve to the laser chamber, which raises a pressure of a gas having passed through the purification column to a gas pressure that is higher than an operating gas pressure of the laser chamber; and a controller that calculates, on a basis of a first amount of a gas supplied from the booster pump through the third control valve to the laser chamber, a second amount of the first laser gas that is to be supplied to the laser chamber and controls the first control valve on a basis of a result of the calculation of the second amount.
Abstract:
A target supply device may include a reservoir configured to hold a target material in its interior in liquid form, a vibrating element configured to apply vibrations to the reservoir, a target sensor configured to detect droplets of the target material outputted from the reservoir, a control unit configured to set parameters based on a result of the detection performed by the target sensor, a function generator configured to generate an electrical signal having a waveform based on the parameters, and a power source configured to apply a driving voltage to the vibrating element in accordance with the electrical signal.
Abstract:
Provided is a laser annealing apparatus that may include: a laser light source section configured to output pulsed laser light to be applied to a thin film formed on a workpiece; a pulse width varying section configured to vary a pulse width of the pulsed laser light; a melt state measuring section configured to detect that the thin film irradiated with the pulsed laser light is in a melt state; and a controlling section configured to determine, based on a result of detection by the melt state measuring section, a duration of time during which the thin film is in the melt state, and to control the pulse width varying section to allow the duration of time to be of a predetermined length.
Abstract:
An extreme ultraviolet light generation device may comprise: a chamber provided with a through-hole; an introduction optical system configured to introduce the pulse laser beam into a first predetermined region inside the chamber through the through-hole; a target supply device configured to output the target toward the first predetermined region; a light source configured to irradiate a second predetermined region with light whose optical path in the second predetermined region has a transverse section that is longer along a direction perpendicular to a direction of movement of the target than along the direction of movement of the target, the second predetermined region including part of a trajectory of the target between the target supply device and the first predetermined region; and an optical sensor configured to detect light incident on the optical sensor from the second predetermined region to detect the target passing through the second predetermined region.
Abstract:
A discharge-pumped gas laser device may include a laser chamber, a pair of discharge electrodes provided in the laser chamber, a fan with a magnetic bearing being provided in the laser chamber and configured to be capable of circulating a gas in the laser chamber, a housing configured to contain the laser chamber, and a magnetic bearing controller connected to the magnetic bearing electrically, being capable of controlling the magnetic bearing, and provided in the housing separately from the laser chamber.
Abstract:
A laser apparatus may include a master oscillator configured to output a laser beam, at least one amplifier provided in a beam path of the laser beam, at least one saturable absorber gas cell provided downstream from the at least one amplifier and configured to contain a saturable absorber gas for absorbing a part of the laser beam, the part of the laser beam having a beam intensity equal to or lower than a predetermined beam intensity, a fan provided in the saturable absorber gas cell and configured to cause the saturable absorber gas to circulate, and a heat exchanger provided in the saturable absorber gas cell and configured to cool the saturable absorber gas.
Abstract:
A laser apparatus includes a master oscillator configured to output a pulse laser beam, at least one amplifier disposed in an optical path of the pulse laser beam, an energy detector that is disposed in the optical path on one of an input side and an output side of the amplifier and that is configured to detect energy of self-oscillating light from the amplifier, a gain adjustment section configured to adjust the gain of the amplifier, and a control unit configured to control the gain adjustment section based on a detection result from the energy detector when a pulse laser beam is not being inputted into the amplifier from the master oscillator.
Abstract:
An amplifier may include a plurality of discharge tubes arranged in a designed path of a seed laser beam and an optical system arranged to steer the seed laser beam to travel along the designed path.
Abstract:
An apparatus for generating extreme ultraviolet light may include a reference member, a chamber fixed to the reference member, the chamber including at least one window, a laser beam introduction optical system configured to introduce an externally supplied laser beam into the chamber through the at least one window, and a positioning mechanism configured to position the laser beam introduction optical system to the reference member.