Abstract:
An electric submersible pump (ESP) assembly. The ESP assembly comprises a centrifugal pump, an electric motor mechanically coupled by a drive shaft to the centrifugal pump, wherein the electric motor comprises a stator and a rotor, a bearing, wherein the bearing is disposed inside the electric motor, and a magnetic shield disposed in the electric motor between bearing and the rotor and stator.
Abstract:
[Object] To provide a permanent magnet electric motor that can be downsized in a rotation axis direction and can also suppress a leakage flux. [Solving Means] The permanent magnet electric motor includes: a columnar rotor including a permanent magnet portion annularly disposed; a shaft disposed along a rotation axis of the rotor; a cylindrical stator core disposed on an outer circumferential side of the rotor; a main body including a shell integrally formed with the stator core; a bracket attached to one end side of the main body; and a bearing that rotatably supports the shaft. The bracket includes a bearing house portion that stores the bearing, and a non-magnetic portion that is connected to the bearing house portion. The bearing house portion is disposed on an inner diameter side relative to the permanent magnet portion as viewed from an axis direction of the rotation axis, and an edge portion of the bearing house portion on an outer diameter side is covered with the non-magnetic portion.
Abstract:
A rolling bearing device includes a bearing portion and a power generation portion. The power generation portion has a plurality of projecting portions provided on an outer ring spacer, a pair of core members provided on an inner ring spacer, a magnet, and a coil. The power generation portion generates an induced current in the coil as the projecting portions pass in the vicinity of first side end portions of the core members during rotation. There are two different loop paths along which magnetism generated by the magnet flows: a first loop path formed when the projecting portions are close to the first side end portions of the core members; and a second loop path formed when the projecting portions and the first side end portions of the core members are away from each other.
Abstract:
A magnetic bearing, adapted to equip a rotary apparatus. The magnetic bearing comprises: an actuator sub-assembly provided with a magnetic base and at least three actuator bobbins mounted on the magnetic base, and a sensor sub-assembly provided with at least three magnetic sensors associated with the actuator bobbins. At least one sub-assembly amidst the actuator sub-assembly and the sensor sub-assembly comprises at least three sectors mounted together. Each sector includes at least one actuator bobbin when the sector belongs to the actuator sub-assembly, or at least one magnetic sensor when the sector belongs to the sensor sub-assembly. The invention also concerns a rotary apparatus comprising such a magnetic bearing and a method for manufacturing such a magnetic bearing.
Abstract:
A magnetic bearing for the mounting of a shaft, in particular for a spinning rotor of an open-end spinning device, features several pole shanks of a stator for the active radial magnetic mounting of the shaft in two degrees of freedom, which in each case are surrounded by a coil and are radially arranged to each other, in such a manner that they define an opening for the shaft. In the area of the opening, the pole shanks are connected to each other. For the passive axial mounting of the shaft, at least one permanent magnet is arranged between the coils and the opening. The invention also includes a shaft for mounting with at least one corresponding magnetic bearing. The shaft is a composite component, which at least partially consists of non-ferromagnetic material. In the area of the radial and axial mounting, a component made of a ferromagnetic material is arranged. A shaft mounting is also provided and features, for the passive axial mounting of one degree of freedom of the shaft and for the active radial mounting of two degrees of freedom of the shaft, at least one, preferably two, corresponding magnetic bearings.
Abstract:
A magnetic bearing comprising a stator magnetic circuit secured to a stationary support device, the stator magnetic circuit comprising at least one coil and a ferromagnetic body placed in a protective annular support, the protective annular support leaving uncovered a surface of the ferromagnetic body and a surface of the at least one coil. The bearing also comprises at least one annular plug placed on the surface of the at least one coil which is left uncovered by the protective annular support, and the annular plug and the surface of the ferromagnetic body which is left uncovered by the protective annular support are coated by a protective layer.
Abstract:
A magnetic bearing assembly for a rotary machine having a rotor shaft, comprising a stator magnetic circuit secured to a stationary support element and comprising at least one body of ferromagnetic material and at least one coil, both being fitted in a protective annular housing leaving uncovered a surface of revolution of said ferromagnetic body and a surface of revolution of said one coil, the magnetic bearing assembly comprising an annular thrust collar secured to the rotor shaft and radially extending towards the stator magnetic circuit by a radial portion, said radial portion facing the uncovered surfaces of said ferromagnetic body and said one coil. The annular thrust collar comprises at least one flow channel.
Abstract:
A radial magnetic bearing may include an annular housing including a radial outer wall disposed between radially outer ends of two annular axial end plates and an isolation sleeve which may include a helical arrangement of a plurality of ferromagnetic wires. The isolation sleeve may be an annular structure extending axially between the two annular axial end plates, and the isolation sleeve and the annular housing may define an isolation cavity therebetween. The radial magnetic bearing may also include an isolation sleeve retainer configured to maintain a position of the isolation sleeve between the two annular axial end plates. The radial magnetic bearing may further include a plurality of laminations disposed adjacent the isolation sleeve and about a shaft of the rotating machine. A gap may be defined between the plurality of laminations and the isolation sleeve.
Abstract:
A discharge-pumped gas laser device may include a laser chamber, a pair of discharge electrodes provided in the laser chamber, a fan with a magnetic bearing being provided in the laser chamber and configured to be capable of circulating a gas in the laser chamber, a housing configured to contain the laser chamber, and a magnetic bearing controller connected to the magnetic bearing electrically, being capable of controlling the magnetic bearing, and provided in the housing separately from the laser chamber.
Abstract:
A rotating apparatus includes a housing, a shaft at least partially disposed within a first pressure environment defined by the housing, a first magnetic bearing supporting the shaft and being at least partially disposed within the first pressure environment, a sensor operable to sense a position of the shaft relative to the first magnetic bearing, a controller disposed in a second pressure environment independent of the first pressure environment and operable to communicate with the sensor and to generate a control signal for the first magnetic bearing based on the sensed position, and a communication device operable to communicate the control signal between the controller and the first magnetic bearing and to communicate the sensed position between the sensor and the controller without penetrating a pressure boundary defined between the first and second pressure environments.