Abstract:
A pump may include a stator, a rotor, and an impeller. The stator may include one or more electromagnets and one or more permanent magnets. The rotor may include an armature, one or more complementary permanent magnets, and a pull magnet configured to position the rotor in an axial direction. The rotor may be disposed within the stator. The complementary permanent magnets and the one or more permanent magnets of the stator may create magnetic bearings. The armature may be aligned with at least one of the electromagnets of the stator and configured to rotate the rotor with respect to the stator. The impeller may be coupled to the rotor.
Abstract:
An abnormal physical condition determination system includes: an extraction unit that extracts a plurality of feature quantities indicating a condition of a target person from an image of the target person; an accumulation unit that accumulates the plurality of feature quantities as time series data; a calculation unit that calculates a relationship between each feature quantity from the plurality of feature quantities accumulated in the accumulation unit; and a determination unit that determines an abnormal physical condition of the target person on the basis of the relationship. According to such an abnormal physical condition determination system, it is possible to appropriately determine the abnormal physical condition of the target person.
Abstract:
A magnetic bearing device and a positioning system which includes the magnetic bearing device are provided. The magnetic bearing device comprises a stator and a moving member which are formed from a coil device with at least one coil body, magnets, and/or flux guide members, where the moving member is movable relative to the stator along a direction of motion and the stator and the moving member are configured such that a magnetic force can be exerted upon the moving member when electrical energy is applied to the coil device to form an air gap between the stator and the moving member. The coil device is arranged exclusively in the stator and the extension of the moving member in the direction of motion is smaller than the extension of the stator in this direction. The extension of the stator corresponds to the length of the at least one coil body.
Abstract:
The aim of the invention is to better compensate for specifiable forces on a magnetic mounting. This is achieved by a magnetic mounting device with a first magnet device (10), which is designed in an annular manner and which has a central axis, for retaining a shaft on the central axis in a rotatable manner by means of magnetic forces. The magnetic mounting device additionally has a second magnet device (12), which is independent of the first magnet device (10), for compensating for a specifiable force acting on the shaft. In this manner, the magnetic mounting device can compensate for the gravitational force or forces based on imbalances.
Abstract:
An electromagnetic rotary drive includes a magnetically contactlessly drivable rotor free of coils, and a stator configured as a bearing and drive stator configured to drive the rotor magnetically and contactlessly about an axis of rotation. The rotor is capable of being supported magnetically contactlessly with respect to the stator in an operating state. The stator includes an upper stator part having a plurality of pronounced upper poles configured to carry upper windings and a lower stator part having a plurality of pronounced lower poles configured to carry lower windings. The upper stator part and the lower stator part are arranged spaced apart from one another with respect to an axial direction. A permanent magnet is disposed between the upper stator part and the lower stator part.
Abstract:
A bias magnetic flux is formed so as to be passed through the electromagnet core of an electromagnet, and a bypass magnetic path, serving as a magnetic path for a control magnetic flux, is formed in parallel with a permanent magnet, the bypass magnetic path being magnetized in a direction in which passage of the bias magnetic flux is blocked, and thus, even if the permanent magnet and the electromagnet are disposed in locations where the mutual magnetic fluxes of the permanent magnet and the electromagnet are superimposed, the control magnetic flux formed by the electromagnet is passed through the bypass magnetic path, whereby loss of the control magnetic flux can be suppressed. Thereby, the permanent magnet and the electromagnet can be disposed in locations where the mutual magnetic fluxes are superimposed, whereby the device can be made smaller in size.
Abstract:
The present invention relates to a thrust magnetic bearing for bias compensation, and more particularly, to a thrust magnetic bearing for bias compensation in which annular permanent magnets and electromagnets are disposed to face each other with respect to a levitated member and the permanent magnets are formed to be asymmetrical in lengths thereof in an axial direction to thus exert an attractive force for compensating for a bias by the difference in the lengths of the permanent magnets in the axial direction to compensate for the bias, and a current supply for bias magnetic flux is not required, saving energy.
Abstract:
A magnetically-levitated centrifugal pump comprises a pump head section and a pump section, where the pump section comprises a stator, a torque transmission disc, a motor, a displacement sensor, and a pump housing.
Abstract:
An electromagnetic actuator generates electromagnetic forces across large radial gaps to support a body. The actuator has an actuator target having a rotational axis, and a target magnetic element arranged circumferentially around the rotational axis that has inner and outer magnetic poles. A cylindrical soft-magnetic target pole is magnetically coupled to the outer cylindrical magnetic pole of the target magnetic element. An actuator base includes radial poles arranged circumferentially around and radially spaced apart from the cylindrical soft-magnetic target pole. The radial poles and the cylindrical soft-magnetic target pole are magnetically coupled and define a plurality of magnetic control circuits. Control coils around the radial poles are configured to produce magnetic fluxes in the magnetic control circuits. The target magnetic element, the cylindrical soft-magnetic target pole, and the radial poles are magnetically coupled and define a magnetic bias circuit, the magnetic element producing magnetic flux in the magnetic bias circuit.
Abstract:
A homopolar magnetic actuator is configured to exert controllable radial forces on a body adapted to rotate around an axis. The actuator comprises at least three radial magnetic pole assemblies distributed at some distances from each other along the axis, each including a plurality of poles adjacent to an actuator target on the body. Permanent magnets are used to induce bias magnetic fluxes in the assemblies with polarities alternating from assembly to assembly but remaining the same around the rotational axis. Having several small bias fluxes distributed between several pole assemblies instead of a large single bias flux facilitates designing an actuator with a high aspect ratio. A control coil around each pole can induce a control magnetic flux in the poles. These control fluxes affect magnetic flux distribution around the actuator target, resulting in magnetic forces exerted on the target.